

TRS-80®
MODEL 4/4P
TECHNICAL
REFERENCE

MANUAL

CAT. NO. 26-2119

TRSOQS! Version 6 2 O Operating System:
<e: 1984 Logical Systems

Licensed to Tandy Corporation
All Rights Reserved

Model 414P Technical Reference Manual; Hardware Part:
,i::: 1985 Tandy Corporation

All Rights Reserved

Model 4/4P Technical Reference Manual; Software Part:
Y 1985 Tandy Corporation and Logical Systems

All Rights Reserved

Reproduction or use. without express wntten permission from Tandy Corporation or
any portion of this manual is prohibited While reasonable efforts have been taken
In the preparation of this manual to assure its accuracy, Tandy Corporation as
sumes no liability resulting from any errors or omissions in this manual, or from the
use of the information contained herein

TRSDOS is a registered trademark of Tandy Corporation

10 9 8 7 6 5 4 3 2 1

HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
HARDWARE
M4RnWARE

SECTION I

u
11.1
1.L2
1 1.3
1.1 4
11.5
116
U 7
11.8
1.1.9
1.110
1 1 11
1 1 12
1.1 13
1.2
1 3

SECTION II
2 1
2 1 1

212
2 1.3

214
2 1 5
2 1.6
2 1 7
2.1.8
2.1.9
2.110
21 11
2 1 12
2.1 13
2 1.14

2 1 15
2.1 16
2.L17

SECTION Ill
3 1

31.1
3.1 2
3.1.3
3 1.4
3 1 5

3 1 6
3 1.7
3 18
319
3.110
3 1.11
3.1 12
3113
3 1 14

3.1.15
3 1 16

Model 4 Theory of Operation

Introduction
CPU and Timing
Buffering
Address Decoding
ROM
RAM
Keyboard
Video
Real Time Clock
Cassette Circuitry
Printer Circuitry
1/0 Connectors
Sound Option
Model 4 1/0 BUS
Port Bits

Part 1 / Hardware

Model 4 Gate Array Theory of Operation

Introduction
Reset Circuit
CPU
System Timing and Control Register
Address Decode
ROM
RAM
Video Circuit
Keyboard
Real Time Clock
Line Printer Port

Graphics Port
Sound Port,
1/0 Bus
Cassette Circuit
FOG Circuit
RS-232C Circuit

Model 4P Theory of Operation

Introduction
Reset Circuit
CPU
System Timing
Address Decode
ROM
RAM.
Video Circuit
Keyboard

Real Time Clock
Line Printer Port

Graphics Port

Sound
1/0 Bus Port
FDC Circuit
RS-232C Circuit

.7

.9
9

.9
10

. 13
16

19
.21
21
21
21
21
28
36
36
36

.41
41
41
41

.44
44
48
48
51

55
57
57
57
57
57
60
60
71

.85
87
87
87
91
91
91
93
98

SECTION IV 101

4..2 4P Gate Array Theory of Operation 103

421 Introduction 103
4.2.2 Reset Circuit 103
423 CPU 103
424 System Timing 103

425 Address Decode 105

4.2.6 ROM 105
4.2 7 RAM 116
4.2.8 Video Circuit 130
4.2.9 Keyboard 132
4 2 10 Real Time Clock 132
4.2 11 Line Printer Port 132
4.2 12 Graphics Port 136
4 2.13 Sound 136
4 2 14 1/0 Bus Port 136
4 2.15 FDC Circuit 138
4 2.16 RS-232C Circuit 142

'3J:r'TIOI\! \/ r.hir SnPr:ifi~rttiom 147

INDEX

II

SECTION I

4 THEORY OF OPERATION

Hardware 1

1.1 MODEL 4 THEORY OF OPERATION

1.1.1 Introduction

The TRS-80 Model 4 Microcomputer is a self-contained
desktop microcomputer designed not only to be completely
software compatible with the TRS-80 Model Ill, but to pro•
vide many enhancements and features. System distinctions
which enable the Model 4 to be Model 111 compatible
include: a 280 CPU capable of running at a 4 MHz clock
rate, BASIC operating system in ROM (14K), memory
mapped keyboard, 64-character by 16-line memory-mapped
video display, up to 128K Random Access Memory, cassette
circuitry able to operate at 500 or 1500 baud, and the
ability to accept a variety of options These options include:
one to four 5-1 /4 inch double density floppy disk drives, one
to four five megabyte hard disk drives, an RS-232 Serial
Communications Interface, and a 640 by 240 pixel high
resolution graphics board.

1.1.2 CPU and Timing

The central processing unit of the Model 4 microcomputer
is the Z80·A microprocessor - capable of running at either
a two (2 02752) or four (4 05504) MHz clock rate. The main
CPU timing comes from the 20 MHz (20 2752 MHz) crystal
controlled oscillator, Y1 and 01. There is an additional
12 MHz (12 672 MHz) oscillator, Y2 and 02, which is
necessary for the 80 by 24 mode of video operation .. The
oscillator outputs are sent to two Programmable Array
Logic (PAL) circuits, U3 and U4, for frequency division
and routing of appropriate timing signals

PAL U3 divides the 20 MHz signal by five for 4 MHz CPU
operation, by ten for a 2 MHz rate, and slows the 4 MHz
clock for the Ml Cycle (See Figure 1-3) U3 also divides the
master clock by four to obtain a 5 MHz clock to be sent to
the RS-232 option connector as a reference for the baud
rate generator. PAL U4 selects an appropriate 1 o MHz or 12
MHz clock for the video shitt clock, and using divider U5
provides additional timing signals to the video display cir
cuitry (See Fig. 1-4)

Hex latch U 18 is clocked from the 20 MHz clock, and is
used to provide MUX and CAS timing for the dynamic

Port Addr. (Hex) Read Function

memory circuits, Also, with additional gates from U16,
U19, U20, U31, and U32, this chip provides the wait cir
cuitry necessary to prevent the CPU from accessing video
RAM during the active portion of the display, This is done
by latching the data for the video RAM and simultaneously
forcing the Z80 CPU into a "WAIT" state and is necessary
to eliminate undesirable "hashing" of the video display
(See Fig. 1-4)

1.1.3 Buffering

Low level signals from and to the CPU need to be buffered,
or current amplified in order to drive many other circuits
The 16 address lines are buffered by U55 and U56, which are
unidirectional buffers that are permanently enabled. The
eight data lines are buffered by U71 Since data must flow
both to and from the CPU, U71 is a bi•directional buffer
which can go into a three-state cond'1tion when not in use"
Both direction and enable controls come from the address
decoding section

The clock signal to the CPU (from PAL U3) is buffered by
active pullup circuit 03 RESET and WAIT inputs to the
CPU are buffered by U 17 and U46. Control outputs from
the 280 (Mt•, RD•, WR•, MREQ*, and !ORO*) are sent
to PAL U58, which combines these into other appropriate
control signals consistent with Model 4's architecture Other
than MREO*, which is buffered by part of U38, the raw
control signals go to no other components, and hence require
no additional buffering"

1.1.4 Address Decoding

The address decoding section is divided into two sub•
sections: Port address decoding and Memory address
decoding

In port address decoding, low order address lines (some
combined through a portion of U32) are sent to the address

and enable inputs of U48, U49, and U50. U48 is also enabled
by the IN* signal, which means that is decodes port input
signals, while U49 decodes port output signals. A table of
the resulting port map is shown below:

Write Function

FC - FF

FB · FB
(11 F4 · F7
(1) F3

Cassette In, Mode Read Cassette Out, resets
cassette data latch
Output to Printer
Drive Select latch
FDC Data Reg

(1) F2
(1) Fl

Read Printer Status
. reserved •
FDC Data Reg
FDC Sector Reg
FDC Track Reg

Hardware 3

FDC Sector Reg
FDC Track Reg

I
Ill a.
:;:
Ill
m .,,.

TIMING

~

KEY
BOARD

CPU

CONTR.

.._

I-
w
(f)
w
a:

~
CRTC

"' J, ADDR MUX
BUF -

LL VID ::)
DATA - (ll RAM
BUF

t

ROM I+-
'.::ASS . 110

ADDRESS
DECODE

+- w
0

...J 0 -0 (.)
a: w
I- 0 ~ RSe32 a: <(z a: RAM 0 I- 0 ~ BO/\RD 0 <((.) 0

<(0 0 CCNN I+- <(

-KEY BUF - .
110

KEY BUF - BU,;

t BUF

FIGURE 1-1. MODEL 4 BLOCK DIAGRAM

. - VID
OUT

---+

.---
'--.....__

GRAP
CONN.

,,

~

~ DISK
CONT.
CONN.

-

~

D

AL
ISK

(11 F0 FDC Status Reg

EC· EF Resets RTC Int
(21 EB Rcvr Holding Reg
(21 EA UART Status Reg.
(21 E9 - reserved

(21 EB Modem Status

E4 · E7 Read NM I Status
EO · E3 Read I NT Status

(31 CF HD Status
(31 CE HD Size/Drv/Hd
(31 CD HD Cylinder high
(31 cc HD Cylinder low
(3) CB HD Sector Number

(31 CA HD Sector Count

(3) C9 HD Error Reg.
(31 CB HD Data Reg.
(31 C7 HD CTC channel 3
(31 C6 HD CTC channel 2
(31 C5 HD CTC channel 1
(31 C4 HD CTC channel 0
(31 C2 · C3 HD Device ID Reg
(3) Cl HD Control Reg
(3) co HD Wr ProL Reg

94 · 9F - reserved -
(41 90 · 93 - reserved -
(51 8C·8F Graphics SeL 2

88 C RTC Data Reg
BA CRTC Control Reg.
89 CRTC Data Reg

88 CRTC Control Reg
84 · 87 - reserved -

(5) 83 "reserved •
(5) 82 reserved -
(51 81 Graphics Ram Rd

(51 80 - reserved •

Notes: (1) Valid only if FDC option is installed
(21 Valid only if RS·232 option is installed
(31 Valid only if Hard Disk option is installed
(4) Valid only if sound option is installed
(5) Valid only if High Resolution Graphics option is installed

Hardware 5

FDC Command Reg
Mode Output latch
Xmit Holding Reg
UART/Modem control
Baud Rate Register

Master Reset/Enable
UART control reg
Write NMI Mask reg
Write INT Mask reg
HD Command
HD Size/Drv/Hd
HD Cylinder high
HD Cylinder low
HD Sector Number

HD Sector Count
HD Write Precomp
HD Data Reg
HD CTC channel 3
HD CTC channel 2
HD CTC channel 1
HD CTC channel 0
- reserved -

HD Control Reg
- reserved -
• reserved -
Sound Option

Graphics Se!. 2

CRTC Data Reg.
CRTC Control Reg
CRTC Data Reg.
CRTC Control Reg
Options Register

Gra. X Reg. Write
Gra. Y Reg. Write

Graphics Ram Wr,

Gra Options Reg Wr

Following is a Bit Map of the appropriate ports in the Mode! 4. Note that this is an "internal" bit map only For bit maps of the
optional devices, refer to the appropriate section of the desired manual

Model 4 Port Bit Map

Port D7 D6 D5 D4 D3 D2 D1 DO

FC - FF Cass Cassette

(READ) data (MIRROR of PORT EC) data
500 bd 1500 bd

Fe· FF (Note, also resets cassette data latch) cass cassette

(WRITE) X out data out

F8 · FB Prntr Prntr Prntr Prntr
(READ) BUSY Paper Select Fault

t-ti t-ti ~rnu i--rnu rnlll ?1 IHI rlllll r111u ;\11t1 I I I l~l

(WRITE) DJ D6 D5 D4 D3 D2 D1 DO

EC· EF (Any Read causes reset of Real Till1e Clock Interrupt)

EC - EF CPU Enable Enable Mode Cass X

(WRITE) Fast EX 1/0 Altset Select Mot On

EO - E3 Receive Receive Xrnit 10 Bus RTC C Fall C Rise
(READ) Error Data Empty Int Int Int Int

EU - E3 Enable Enable Enable Enable Enable Enable Enable
(WRITE) Rec Err Rec Data Xmit Emp 10 Int RT Int CF Int CR Int

90 - 93 X X Sound
(WRITE) X Bit

84 - 87 Page Fix Upr Memory Memory Invert 80/64 Select Select
(WRITE) Memory Bit 1 BitO Video Bit 1 BitO

Memory mapping is accomplished by PAL U59 in the Basic 16K or 64K computer In a 128K system, PAL U72, along with the
select and memory bits of the options register, also enter into the memory mapping function,

Four memory maps are listed below, Memory Map I is compatible with the Model Ill Note that there are two 32K banks in the

64K system, which can be interchanged with either position of the upper two banks of a 128K system. The 128K system has
four moveable 32K banks .. Also note, in the Model 111 mode, that decoding for the printer status read (37E8 and 37E9 hexadeci
mal) is accomplished by U93 and leftover gates from U40, U46, U51, U54, U60, and U62

0000- 1FFF
2000 - 2FFF
3000 - 37FF
37E8 37E9
3800 38FF
3COO - 3FFF
4000 7FFF
4000- FFFF

Memory Map I - Model 111 Mode

ROM A (BK)
ROM B (4K)
ROM C (21<) - Less 37E8 • 37E9
Printer Status Port
Keyboard
Video RAM (Page bit selects 1 K of 2K)
RAM (16K system)
RAM (64K system)

Hardware 6

Memory Map II

0000 - 37FF RAM (14K)

3800 - 3BFF Keyboard
3COO - 3FFF Video RAM
4000- 7FFF RAM (16K) End of one 32K Bank

8000 - FFFF RAM (32K) Second 32 K Bank

Memory Map Ill

0000 - 7FFFF RAM (32K) End of One 32K Bank

8000 F3FF RAM (29K) Second 32K Bank
F400-F7FF Keyboard
FBOO - FFFF Video RAM

Memory Map IV

0000 - 7FFF RAM (32K) One 32K Bank
Second 32K Bank 8000 FFFF RAM (32K)

(See Figure 1-2 for 128K Maps)

1.1,5 ROM

The Model 4 Microcomputer contains 14K of Read Only
Memory (ROM), which is divided into an BK ROM (U68), a
4K ROM (U69), and a 2K ROM (U70) ROMs used have
three-state outputs which are disabled if the ROMs are
deselected, As a result, ROM data outputs are connected
directly to the CPU data bus and do not use data buffer
U71, which is disabled during a ROM access,

ROMs are Model Ill compatible and contain a BASIC opera
ting system, as well as a floppy disk boot routine, The enable
inputs to the ROMs are provided by the address decoding
section, and are present only in the Model 111 mode of
operation,

1.1.6 RAM

Three configurations of Random Access Memory are avail
able on the Model 4: 16K, 64K, and 128K The 16K option
uses 4116 type, 16K by 1 dynamic RAMs, which require
three supply voltages (+12 volts, +5 volts, and -5 volts)
The 64K and 128K options use 6665 type, 64K by 1 dyna
mic RAMs, which require only a single supply voltage (+5
volts) The proper voltage for each option is provided by

jumpers

Dynamic RAMs require multiplexed incoming address lines"

This is accomplished by ICs U63 and U76. Output data
from RAMs is buffered by U64. With the 128K option, there
are two rows of the 64K by 1 RAM !Cs, The proper row is
selected by the GAS• signal from PAL U72

1.1.7 Keyboard

The Model 4 Keyboard is a 70-key sculptured keyboard,
scanned by the microprocessor, Each key is identified by
its column and row position, Columns are defined by address
lines AO • A7, which are buffered by open•collector drivers
U29 and U30c Data lines DO • 07 define the rows and are
buffered by CMOS buffers U44 and U45. Row inputs to the
buffers are pulled up by resistor pack RP 1, unless a key

in the current column being scanned is depressed .. Then,
the row for that key goes low

1.1.8 Video

The heart of the video display circuitry in the Model 4 is
the 68045 Cathode Ray Tube Controller .. The CRTC allows
two screen formats: 64 by 16 and 80 by 24 Since the BO
by 24 screen requires 1,920 screen memory locations, a
2K by 8 static RAM is used for the Video RAM, The 64
by 16 mode has a two•page screen display and a bit in the
options register for determining which page is active for
the CPU .. Offset the start address of the CRTC to gain
access to the second page in the 64 by 16 mode,

Addresses to the video RAM are provided by the 68045
when refreshing the screen and by the CPU when updating
the data These two sets of addresses are multiplexed by
U33, U34, and U35. Data between the CPU and Video
RAM is latched by U6 for a write, and buffered by U7 for
a read operation,

Hardware 7

1,0K ~•CHM

UYIIOMHl1,VllltOf.'llVl0

l~ll! ~l l\H ,1 o,
,r,(lfllKV•lllOl<M•1

FIGURE 1-2, RAM MEMORY

Hardware 8

During screen refresh, the data outputs of the Video RAM
(ASCII character codes) are latched by UB and become the
addresses for the character generator ROM (U23), In cases
of low resolution graphics, a dual 1 of 4 data selector {U9)
is the cell generator, with additional buffering from Ul0

The shift register U 11 inputs are the latched data outputs
of the character or cell generator The shift clock input
comes from the PAL U4, and is 10.1376 MHz for the 64
by 16 mode and 12672 MHz for 80 by 24 operation The
serial output from the shift register later becomes actual
video dot information

Special timing in the video circuit is handled by hex latch
U2 This includes blanking {originating from CRTC) and
shift register loading {originating from U4) Additional
video control and timing functions, such as sync buffering,
inversion selection, dot clock chopping, and graphics disable
of normal video, are handled by miscellaneous gates in U12,
U13, U14, U22, U24, and U26

1.1.9 Real Time Clock

The Real Time Clock circuit in the Model 4 provides a 30
Hz {in the 2 MHz CPU Mode) or 60 Hz {in the 4 MHz CPU
Mode) interrupt to the CPU By counting the number of
interrupts that have occured, the CPU can keep track of the
time, The 60 Hz vertical sync signal from the video circuitry
is divided by two {2 MHz Mode) by U53, and the 30 Hz at
pin 1 of U51 is used to generate the interrupts Jn the 4
MHz mode, signal FAST places a logic low at pin 1 of U51,
causing signal VSYNC to trigger the interrupts at the 60 Hz
rate. Note that any time interrupts are disabled, the accuracy
of the clock suffers

1.1.10 Cassette Circuitry

The cassette write circuitry latches the two LSBs (DO and
D1 I for any output to port FF {hex). The outputs of these
latches (U27) are then resistor summed to provide three
discrete voltage levels (500 Baud only).. The firmware toggles
the bits to provide an output signal of the desired frequency
at the summing node,

There are two types of cassette Read circuits 500 baud and
1500 baud The 500 baud circuit is compatible with both
Model 1 and 111. The input signal is amplified and filtered
by Op amps {U43 and U28 Part of Ul 5 then forms a
Zero Crossing Detector, the output of which sets the latch
U40 A read of Port FF enables buffer U41, which allows
the CPU to determine whether the latch has been set, and
simultaneously resets the latch The firmware determines
by the timing between settings of the latch whether a logic
"one" or "zero" was read in from the tape

The 1500 baud cassette read circuit is compatible with the
Model Ill cassette system .. The incoming signal is compared
to a threshold by part of U15, U15's output will then be
either high or low and clock about one-half of U39, depend
ing on whether it is a rising edge or a falling edge. If
interrupts are enabled, the setting of either latch will gene
rate an interrupt, As in the 500 baud circuit, the firmware
decodes the interrupts into the appropriate data,

For any cassette read or write operation, the cassette relay
must be closed in order to start the motor of the cassette
deck, A write to port EC hex with bit one set will set latch
U42, which turns on transistor 04 and energizes the relay
K 1 , A subsequent write to th is port with bit one clear
will clear the latch and de-energize the relay

1.1.11 Printer Circuitry

The printer status lines are read by the CPU by enabling
buffer U67 This buffer will be enabled for any input from
port FB or F9, or any memory read from location 37E8
or 37E9 when in the Model 111 mode, For a listing of bit
status, refer to the bit map

After the printer driver software determines that the printer
is ready to receive another character (by reading the status),
the character to be printed is output to port FB. This latches
the character into U66, and simultaneouly fires the one-shot
U65 to provide the appropriate strobe to the printer

1.1.12 1/0 Connectors

Two 20-pin single inline connectors, J7 and JB, are provided
for the connection of a Floppy Disk Controller and an
RS-232 Communications Interface, respectively" All eight
data lines and the two least significant address lines are
routed to these connectors .. In addition, connections are
provided for device or board selection, interrupt enable,
interrupt status read, interrupt acknowledge, RESET, and
the CPU WAIT signal

The graphics connector, J10, contains all of the above inter·
face signals, plus CRTCLK, the dotclock signal, a graphics
enable input, and other timing clocks which synchronize
the graphics board with the CRTC,

The 1/0 bus connector, J2, contains connections for all
eight data lines (buffered by U74), the low order address
lines {buffered by U73), and the control lines {buffered by
U75) IN', OUT*, RESET*, Ml*, and IORQ* In addition,
the 1/0 bus connector has inputs to allow the devicels),
connected to generate CPU WAIT states and interrupts

Hardware 9

The sound connector, J11, contains only four connections:
sound enable (any output to port 90 hex), data bit DO,
Vee, and ground

1.1.13 Sound Option

The Model 4 sound option, available as standard equipment
on the disk drive versions, is a software intensive device Data

c::J c, 0

a:~ ~ u. ·~ 0:::,
Uz
>- U1
OIi.i
zo
~~+ C2
0

is sent out to port 90H, alternately setting and clearing
data bit DO The state of this bit is latched by sound board
U1 and amplified by sound board 01, which drives a pie
zoelectric sound transducer_ The speed of the software
loop determines the frequency, and thus, the pitch of the
resulting tone

0 wl e,
8709403

0

COMPONENT LOCATION/CIRCUIT TRACE, SOUND BOARD #8858121

J11

D0

BLK

SEN

WHT

2)

1
o+sv

RED

4 r1µF

~

+SV +SV +SV

2 R1
D Q 1.8 Kr!

U1
LS74

R2

1i 6
3 6 Kr! 01

2N3906

C

+sv
R3
120n

OMB-6
TRANSDUCER

SCHEMATIC 8000188, SOUND BOARD #8858121

Hardware 10

I

"' a.
~
co
:::

20.2752 MHz

10M = 10.1376MHz

RS232 7 I L

PCLK (2MHz)

PCLK (4MHzi _j I r
IM1

IMREO °\\ OP CODE FETCH / / ~F

PCLK (4MHz) ,____ __ CD

REFRESH

CD I ~

FIGURE 1-3. TIMING OF U3 & CPU

:r:
Ill a.
=<
Ill
cil
I\)

DCLK

H

1 7 I I I I I L_J I I L
J7 I I r
K ___ .,

LOADS _j LJ L_j

LOADM -u L_j L_j

/DOT

TCRTC

IXADR7 _[

/SHIFT

L __ ___.

LJ
~ LOADM -U L_j

~ { LOADS

0 •
~ /SHIFT

FIGURE 1-4. TIMING OF U4

I T1 I T2 I TW I T3 I I T1 I T2 I TW I T3 I
PCLK JlJlSl.fU

TCRTC I , I -i___r-
::I:

/VIDEO ~ Ill a.
:E
Ill

IZWR '
,

iil
w

IZRD ~
IPWAIT 7 ,- ~

/LATCH DAT ~ Lr
IWID ~ ~

2MHz 4MHz

FIGURE 1-5. CPU VIDEO ACCESS TIMING

1.2 MODEL 4 1/0 BUS

The Model 4 Bus is designed to allow easy and convsnient

interfacing of 1/0 devices to the Model 4 The 1/0 Bus
supports all the signals necessary to implement a device com

patible with the Z-80s 1/0 structure That is:

Addresses:
AU to A7 allow selection of up to 256t input and 256
output devices if external 1/0 is enabled

tports 8GH to 0FFH are reserved for System use

Data:
DBG to D87 allow transfer of 8 bit data onto the pro•
cessor data bus if external 1/0 is enabled

Control Lines:
IN* - Z-80 signal specifying that an input is in pro
gress l.Jai:eU With iO nu
OUT* Z -80 signal specifying that an output is in

progress Gated with JORO
c. RESET* - system reset signal

d IOBUSINT' - input to the CPU signaling an inter·
rupt from an 1/0 Bus device if I /0 Bus interrupts

are enabled
IOBUSWAIT' input to the CPU wait line allow
ing 1/0 Bus device to force wait states on the Z-80
if external 1/0 is enabled
EXTIOSEL' input to CPU which switches the
1/0 Bus data bus transceiver and allows an INPUT
instruction to read 1/0 Bus data

M1 • - and IORQ' standard Z-80 signals

The address line, data line, and control lines a to c and e tog
are enabled only when the ENEXIO bit in EC is set to a one

To enable 1/0 interrupts, the ENIOBUSINT bit in the CPU
IOPORT EG (output port) must be a one, However, even if

it is disabled from generating interrupts, the status of the
IOBUS!NT' line can still read on the appropriate bit of CPU
IOPORT E0 (input port)

See Model 4 Port Bit assignment for port 0 FF, 0 EC, and
0E0 on pages 14 and 15

The Model 4 CPU board is fully protected from "foreign
1/0 devices" in that all the 1/0 Bus signals are buffered and

can be disabled under software control To attach and use an

1/0 device on the 1/0 Bus, certain requirements (both hard
ware and software) must be met

For input port device use. you must enable external 1/0 de•

vices by writing to port 0ECH with bit 4 on in the user soft

warR This will enable the data bus address lines and control
signals to the 110 Bus edge connector When the input de
vice is selected, the hardware will acknowledge by asserting
EXTIOSEL' low This switches lhe data bus transceiver and
allows the CPU to read the contents of lhe l/0 Bus data
lines See Figure 1 6 for the timing EXTIOSEL" can be gen•
eraled by NANDing IN and the 1/0 port address

Output port device use is the same as the input port device in
use, in that the external 1/0 devices must be enabled by writ·

ing to port 0ECH with bit 4 on in the user software - in the
same fashion

For either input or output devices, the IOBUSWAIT* control
line can be used in the normal way for synchronizing slow

used in the Model 4, the wait line should be used with cau

tion. Holding the CPU in a wait state for 2 msec or more may

cause loss of memory contents since refresh is inhibited during

this time. It is recommended that the IOBUSWAIT' line be
held active no more than 500 µsec with a 25% duty cycle

The Model 4 will support Z-80 mode 1 interrupts. A RAM
jump table is supported by the LEVEL II BASIC ROMs and
the user must supply the address of his interrupt service

routine by writing this address to locations 403E and 403F
When an interrupt occurs, the program will be vectored to

the user supplied address if 1/0 Bus interrupts have been

enabled To enable 1/0 Bus interrupts, the user must set bit
3 of Port 0E0H

Hardware 14

Input or Output Cycles

AO A7

DATABUS _ _,_ __ _,

Input or Output Cycles with Wait States

POAT ADDRESS

DATA BUS --+-----1----~----~----I--(

DATA BUS

tEXTIOSEL"

~ln•nlld by zeo CPU

!Coinc:id•nl with IORO• only on INPUT cyd•

FIGURE 1-6. 1/0 BUS TIMING DIAGRAM

Hardware 15

READ
CYCl.E

WAITE
CYCLE

1.3 MODEL 4 PORT BITS

Name:

Port Address:

WRNMIMASKREG'

0E4H
Access: WRITE ONLY

Bit 7 = EN INTRO; 0 disables Disk INTRO from generating
an NMI
1 enables above

Bit 6 = ENO RO; (i} disables Disk ORO from generating an
NMI
1 enables above

Name: RDNMISTATUS'
Port Address: 0E4H
Access: READ ONLY

Bit 7 = Status of Disk INTRO; 1 = False.@= True

Bit 6 Status of Disk ORO; 1 = False. 0 = True

Bit 5 Reset• Status; 1 False, G True

Name: MOD OUT
Port Address: 0ECH
Access: WRITE ONLY

Bit 7 = Undefined

Bit 6 = Undefined

Bit 5 = D ISWAIT; fj} disables video waits. 1 enables

Bit 4 = ENEXTIO; GJ disables external 10 Bus, 1 enables

Bit 3 = ENAL TSET; 0 disables alternate character set.
1 enables alternate video character set

Bit 2 = MODSEL; 0 ,mables 64 character mode,
1 enables 32 character mode

Bit 1 = CASMOTORON; 0 turns cassette motor off
1 turns cassette motor on

Bit 0 Undefined

C\:ame:
Port Address:
Access:

RDINTSTATUS'
0E0H
READ ONLY

NOTE: A 0 indicates the device is interrupting

Bit 7 = Undefined

Bit 6 = RS·232 ERROR INT

Bit 5 = RS·232 RCV INT

Bit 4 = RS·232 XMIT INT

Bit 3 = IOBUS INT

Bit 2 = RTC INT

Bit 1 CASSETTE (1500 Baud) INT F

Bit 0 = CASSETTE (1500 Baud) INT R

Name: CASO UT'
Port Address: 0FFH
Access: WRITE ONLY

Bit 7 = Undefined

Bit 6 = Undefined

Bit 5 Undefined

Bit 4 = Undefined

Bit 3 = Undfined

Bit 2 Undefined

Bit 1 = Cassette output level

Bit 0 = Cassette output level

Hardware 16

Name: WRINTMASKREG"
Port Address: 0E0H
Access: WRITE ONLY

Bit 7 = Undefined

Bit 6 = ENERRORINT; 1 enables RS-232 interrupts on par
ity error. framing error. or data overrun error

0 disable above

Bit 5 ENRCV INT; 1 enables RS·232 receive data register
full interrupts
0 disables above

Bit 4 = ENXMITINT; 1 enables RS-232 transmitter holding
register empty interrupts
0 disables above

Bit 3 = ENIOBUSINT; 1 enables 1/0 Bus interrupts,
0 disables the above

Bit 2 = ENRTC; 1 enables real time clock interrupt,
0 disables above

Bit 1 ENCASINTF; 1 enables 1500 Baud falling edge inter
rupt
0 disables above

Bit 0 ENCASINTR; 1 enables 1500 Baud rising edge Inter
rupt,
0 disables above

Name: CAS IN.
Port Address: 0FFH
Access: READ ONLY

Bit 7 = 500 Baud Cassette bit

Bit 6 = Undefined

Bit 5 = DISWAIT (See Port 0ECH definition)

Bit 4 ENEXTIO (See Port 0ECH definition)

Bit 3 = ENAL TSET (See Port aECH definition)

Bit 2 MODSEL (See Port aECH definition)

Bit 1 = CASMOTORON (See Port aECH definition)

Bit 0 1500 Baud Cassette bit

NOTE: Reading Port 0FFH clears the 1500 Baud Cassette
interrupts

Hardware 17

Name: D RVSE L.

Port Address: GF4H
Access: WRITE ONLY

Bit 7 = FM" /M FM; 0 selects single density,
1 selects double density

Bit 6 = WSGEN; 0 no wait states generated,
1 = wait states generated

Bit 5 = PRECOMP; 0 = no write precompensation.

1 = write precompensation enabled

Bit 4 = SDSE L; 0 selects side 0 of diskette
1 selects side 1 of diskette

Bit 3 Drive select 4

Bit 2 = Drive select 3

Bit 1 Drive select 2

Bit 0 = Drive select l

SECTION II

4 GATE ARRAY THEORY OF OPERATION

Hardware 19

2.1 MODEL 4 GATE ARRAY THEORY OF
OPERATION

2.1.1 Introduction

The following discusses each element of the main board of
the Model 4 Gate Array block diagram (see Figure 2-1) In
each case the Intent is understanding the operation on a
practical level sufficient to aid in isolating a problem to the
failing component

2.1.2 Reset Circuit

Figure 2-2 shows the Reset circuit for generation of reset on
power up and when the reset switch is pushed on the key
board The lime constant determined by RB and C25, is
used to allow the system to stabilize before triggering a one
shot (U63) with an approximate pulse width of 70 microsecs
When the reset switch is pushed, the input pin is brought to
ground and fires the one shot when the switch is released

A second point to be noted is the signal POWRS• which is
used to reset the drive select latch in the FDC circuit

2.1.3 CPU

The central processing unit of the Model 4 microcomputer is
a ZB0A microprocessor, and will run in either 2 or 4 MHz
mode. All of the output lines of the ZB0A are buffered The
address lines are buffered by two 74LS244s (U2 and U3
with the enable tied to ground), the control lines by a 74F04
(U27), and the data lines by a 74LS245 (U28 with the ena
ble tied to BUSEN• and the direction control tied to
BLJSDIR•)

2.1.4 System Timing and Control Registers

Control Registers

The first of these registers is the WRINTMASKREG (LJ34)
This is only part of the register as this function is shared
with the Gate Array 4 5. The main register contains ATC
ENCASINTFALL AND ENCASINTRISE The Gate Array has
the interrupts for the RS232C Interface and the 1/0 bus in
terrupts and a duplicate of the ATC

The second is the OPREG (U33) which contains the added
options of the Model 4 for video and Memory mapping

The last of the registers is MODOLJT (U53) and is also read
able through the CASSIN (U52) buffer It contains the Cas
sette motion controls, and the FAST control for Model 4

CPU Clock and RS232 Clock

Most of the timing generation for the board is shown in Fig
ure 2-5. The Gate Array 4 1 1 is the basis tor this timing as
ii produces the 20 .2752 MHz clock and then divides this
down to produce most of the other clocking functions used
on the board

The first clock that is produced is PCLK (pin 23) which
drives the CPU. It is a divide by ten of the 20 2752 MHz in
the 2 MHz mode and a divide by 5 in the 4 MHz mode The
transition from one mode to the other is without glitches and
both modes are 50 percent duty cycles

Note that the signal that controls this mode also controls the
Real Time Clock circuit described later

As a simple divide by four of the fundamental 20 2752 MHz,
the RS232CLK on pin 22 of U9 provides the basic clock to
the RS232C circuit

Video and Graphics Clocking and Timing

The timing for both of these functions may be viewed as one
since they must operate synchronously and the same liming
must be generated for both The additional signals sent to
the Graphics Board allow it to maintain synchronization by
knowing the phase relation of the signals sent to both of
them To further understand the circuit of Figure 2-5 notice
the PLL Module (UB) This chip develops a 12 672 MHz sig
nal which is phase locked to the 1 2672 MHz input on pin 5
and is a divide by 16 of the primary 20 2752 MHz clock
This provides the Gate Array 4 .1 1 with two clocks to drive
the video display and the graphics circuits, 1 0 1376 MHz for
64 character display, and a 12 672 MHz for the 80 character
display

The following discussion will consider both the 64 and 80
character displays to be the same, the difference being the
primary frequency and not the phase relation or function of
the signals generated

The reference clock for the timing is DCLK (U9-15) and the
other clocks that are produced for the video output are de
rived from this clock (DOT" at U9-17 is a phase shift of
DCLK and is provided as an option for the the dot clock for
variations in delay paths in the video section) U9 then gen
erates SHIFT• (pin 21), XADR?" (pin 20), CRTCLK (pin 19),
LOADS" (pin 18), and LOAD' (pin 16) for the proper timing
for the four video modes In addition for the Graphics Board
to synchronize with this liming H (pin 14), I (pin 13), and J
(pin 11) are fed to connector J12 See Figures 2-6 and 2-7
for the liming diagrams for video clocks generated by Gate
Array 411

Hardware 21

I

'" a.
::;
~
(1)

I\)
I\) I

~

TIMING 1----1-

A = ADDRESS LINES
C = CONTROL LINES
D = DATA LINES
T TIMING

<o ~ASS 1-i

rHil-½-rn I KEYBOARD

---=:l
VIDEO
PORT _JI

tOO,I
VIDEO
RAM le! ~:I

SOUND H I lot PORT

I RAM ~ tt
I- tt~ I lc&i

----- Gr~--t---1-------t--t--_ ___.__ ~l-==_ ~=='=!331 ti
T ._

~EXTERNAL
1/0 BUS
PORT

L-

Lf~
Figure 2-1. Model 4 Gate """'W Functional Block

:c a
:E
"' cil
I\:>

"'

V JL
OWRS

U41
LSl4

l

7

~PO +5V •-f>o- • ~R66
I C70 l60K

18~NC R61 ------ 1000pF

RESET <Cc- 20 7501\ RS r1
sw,q:TH ---T-.1w:.:._ ... ~:r·)' 100K u

4

1 I 14
c

21

__ ,.___..,_ LSl4 I 15

I022pF 3 "--- 4 • I

... 1,,----

JII l

Figure 2-2. Reset Circuit

(Page 4 of Schematic)

RESET NC 13

4 f RESET (SHl,2.3.5)

I I

I~

Hardware 24

Figure 2-4. Control Registers

(Page 2 of Schematic)

Figure 2-5. CPU, RS232C, and Video
Timing Generation

(Page 3 of Schematic)

Hardware 25

1,0M, 12M

DCLK

DOT*

H

I

:i: J
Ill a. :;; MA.0 Ill
io
I\)
c:r, SHIFT*

LOADS*

LOAD*

CRTCLK

XADR7*

_J

LJ
LI

I r

LJ
u

Figure 2-6. Video Timing 64 x 16 Mode 80 x 24 ilode

l r-

-
LJ

I
"' a.
:e
"' cil
"' "'

lf}M, 12M

DCLK
DOT*

H

J

MA0
SHIFT*

LOADS*

LOAD*

CRTCLK

XADR7*

LJ LJ

Figure 2-7.

DRAM and Video RAM Timing

The Video RAM and DRAM timing share the timing delay
line (USO) This is done by "DR"ing the two signals GRAS',
and AINPRG' at U39 to get the signal STOEL' This is pos
sible because the signals VIDEO and MREQ or MCYCEN
are gated in to mask off the signals that are not desired

Since the CRTC and the CPU are operating independently
and at different clock rates, when the CPU wants to access
the Video RAM the two must synchronize with each other
This is accomplished when a video access is decoded
WAIT' it is pulled low, when it is determined whether the ac
cess is a read or write and the correct cycle of the CRTC
clock is present, the actual access can begin, hence
AINPRG' is generated and WAIT' is released

From this point the actual sequence depends on whether a
read or a write is done On a read the address is enabled to
the RAM, the delay through USO to VLATCH' when data is
latched in the 74LS373 where the CPU can pick-up the data
i:11 ti1e 1.;u111µlt1liu11 ul illi::. l..yL!t:: Ou a milt:, !li6 60(ju6i1~6 is

more complex The address is enabled lo lhe RAM, the out
put is disabled (VRAMDIS' at U?-12), write is delayed with
respect to the address (DLYWR' at U60-6) and the butter on
the data lines is enabled (VBUFEN' at U60-8), then after a
delay the write is cutoff to end the cycle for the RAM
(ENDVW' at UB0-1 O) For the timing diagram of the Video
RAM CPU access see Figure 2-8

Address in hex
MAPI' MAP II MAPIII

0000-37FF OOOO-F3FF
0000-37E7
37E8-37E9
37EA-37FF
3800-3BFF 3800-3BFF F400-F7FF
3C00-3FFF .. 3C00-3FFF .. F800-FFFF
4000-?FFF
4000-FFFF 4000-FFFF

DRAM Timing

The DRAM timing is shown in Figure 2-9 At the begining of
the CPU cycle the address lines settle-out first and are,
therefore, decoded to allow maximum access speed (see
Address Decode). With the generation of MREQ, U39-11
generates PMREQ and enables U42 and gates this with the
type of cycle to develop GRAS' (U30-6), RASO' (U30-3),
and RAS1' (U30-11) GRAS' is then "OR"ed wilh AINPRG
as mentioned above The timing from this point is very
straight forward. With RASO' and RAS1 • generated next
MUX (US0-12) is built to switch the addresses to memory
then GCAS is generated and clocks flip-flop U31 with
MCYEN on the J term This is done to make sure this is a
true memory cycle. Then if this is an M1 cycle VLATCH'
clocks at U31 and cuts off PMREQ' at U39 to end the cycle
For timing diagrams of the memory intertace see Figures 2-
10 to 2-12

2.1.5. Address Decode

Thi£ s~cfr~!: !£ d!.,!c!~d !:it0 t\•.'0 p?.rt'3 thP m,::,mn~, :::irlrlrpc:c:.

ing and the 1/0 addressing. This separation is a reflection of
the separate mapping of memory and 1/0 of the ZBOA itself
For reference of both sections, see Figure 2-13

Memory Address

The memory map lor the Model 4 is shown in Table 2-1 and
is best described as an option overlay in the sense that at
each step of additional memory, the new options overlap the
previous and the new options are added on Moreover, the
added options have no effect on previous levels and are in
visible at those levels

Function
MAPIV of block

0000-FFFF RAM (64K)
ROM
Printer Status
ROM
Keyboard
Video RAM
RAM (16K)
RAM (64K)

Table 2·1

• Only map available on 16K machine
•• Page bit is used to select 1 K of 2K Video RAM

The decoding of the addresses for the memory map de
scribed above is done for the most part by US The only de
code not done by U5 is the line printer memory status port
at 37E8 and 37E9 hex. These needed additional address
lines hence the decode LPADD as an input to U5

Hardware 28

I

"' a.
:E
"' cil
I\)
0:,

2,0M

PCLK*

A,0-AlS

MREQ

RD

WR

CRTCLK

XADR7*

VIDEO*

VIDEO

AINPRG*

VWAIT*

VRAMDIS

DLYVWR*

VBUFEN*

VLATCH*

U36-l

Tl

RD CYCLE

T2 TW T3 Tl T2

Figure 2-8. Video RAM CPU Access Timing

WR CYCLE

TW TW T3 Tl

'

';.~,-------;'.,.,..'n'---------'"™"-<9 =
------1----"""!.4--,;D-" nn fl"'=

Figure 2-9. Video RAM and DRAM Timing Circuit.

(Page 2 of Schematic)

Hardware 30

·····=

I
ll> a.
~
ro
~

W,

Waveform
lnput Output

Symbol

\.1ust Be W1!1 Be

Valid Valid

~ Chanqe W11! Chanqe

From H 10 L From H to- l

!llllJ Change Will Change
.:,am L 10 H From L to H

Tl I T2

.MS

Waveform
Symbol

<xxxxxxxx:
~
__;--

Input

Don l Care
:..ny Change

0 <::! 1 mt11ea

T3

Output

Chang,ng
Stale

Unknown

1-1,qn
'r'loeoance

T4

(2 or 4 MHz) PCLK _j
A0'-Al5 ---"---------....1....------------:l..

Ml

MREQ ---------'

RD

RFSH ------------------------~

PMREQ --------...1
RAMRDEN-----~ PRAS* _________ _

RASEN0'* or-----~
RASENl*

RAS0'* or----------.
RASl*

MUX*

CAS*

DRA0'-DRA7 XXXXXXXXXXXI ROW ADD.~ COL. ADD. X
MD0'-MD7 VALID DATA

Figure 2-10. M1 Cycle Timing

REFRESH ADD. X

Tl I T2 I T3 I
PCLK _J \ ' \ ' L

AJ;l'-Al5 x:::=
MREQ

RD

PMREQ

I RAMRDEN L_ '" a.
~ PRAS* "' <ii
(,)
!\l

RASEN,0* or
RASENl* r-

RAS,0* or
RASl*

MUX*

CAS*
l

DRA0-DRA7 XXX'/2N&ll+ ROW ADD. X COL. ADD.

MD,0-MD7 VALID DA~~A

Figure 2-11. Memory Read Cycle Timing

I
Tl

I
T2

I
T3

I
PCLK _j \ ' \ / \ I L

A,0'-Al5

MREQ

WR

PMREQ

RAMWREN
:r:
Ill
a. PRAS* :e
Ill
cil RASEN,0'* or
"' "' RASENl*

RAS,0'* or
RASl*

MUX*

CAS*

DRA.0'-DRA7 &tdYSX ROW ADD.)(COL. ADD. xxxxxxxc=
MD,0-MD7 m WRITE DATA)

Figure 2-12. Memory Write Cycle Timing

Hardware 34

~
8-
~~
"'E I/Jc,
I!! .c
-cu
"ti(/)
ct-. o
~"' . .,
"' 01 ., "' ~a.
:i-

f

641<. ~V~lP,

H'<Hl)"1101>Vl[ltor.'UVIO

,,I I l ~I lO' 'l (),

"IJ!l 1•V>Ol!JIIM1

t,MiK 11),

H ~,,1 •.•! ,., ,.11111, ,,'Ill!<>•

(",41(l}~K 111\f,!

tKPl\f,~l(m

Table 2-2. RAM Memory

Hardware 35

t,~1<. ~v., 11 r,1
,UtJ\1.,,_ l~K 11M.I>

fi•I<. 1]3K H,V.t

{Xl'M,$1lll,

MK l]IlK!l/lM

lXl'IIIISWN

110 port Address

The Port Map decoding is accomplished by three 74LS138s
(U43,U44, and U59). These !Cs decode the low order ad
dress lines (AO - A7) from the CPU and decode the port
being selected The IN· signal and OUT' signal are used in
the decode for U59 and U43, but U44 is a pure address de
code and, therefore, needs to be gated with IN·, OUT', or
!OREO· later For a complete 1/0 map see Table 2-3

2.1.6. ROM

The A ROM is enabled by the decode as appropriate by the
address logic described above, and is addressed in a simple
straight forward fashion The enable for the B/C ROM is also
similarly accomplished, however, the address has a jumper
option available This option is designed to allow for testing
of the board logic in the factory When jumper is moved from
JPB to JP7, the ROM is in the test mode, with the options
appearing on the screen

~.i.7 Ur\Aiv'i

The DRAM timing was described earlier in the timing sec
tion, the actual DRAM is contained in two banks of eight
each U65 to U74 and USS to U92 They are arranged in or
der of data bits DO through D7, U65 and UBS being DO,
through U74 and U92 being D7. Note in Figure 2-15 that the
two banks are different with jumper options in the lower
bank, these options are for the possible use of 16k three
voltage parts When jumpered as shown in Figure 2-14 the
bank is identical to the second bank and is for using 64k
DRAMs With both banks lilted there is 128k available to the
user

2.1.8 Video Circuit

Video Modes

The Model 4 has many video options available through
hardware and software Software has control of inverse
video on a character by character basis by turning on IN
VIDE. Note that this implies the available number of charac
ters is now 128 since the mos! significant bit of the character
code in memory is now used to indicate inverse character
Similarly, an alternate character set can be enabled by turn
ing on ENALTSET This enables a new 64 characters in
place of the last 64 characters, that is, the Kana set in place
of the game set An option not available to software is an
enhanced character, which moves characters down one row
in their character block to make an inverse character appear
within the inverse block and not on the edge of the block
This is done by moving jumper JP11 to JP12 As an exam
ple of a combination of hardware and software options avail
able in the video is the overlay, which not only requires the
Graphics Board to be installed, but also software to enable
the graphics data and the video data with text at the same
time

The Model 4 also has an option for either 64 character or 80
character wide screen The 64 character screen is compatiM
ble with the Model Ill and displays 16 lines The 80 charac
ter screen displays 24 lines In addition each of these has a
double width mode These options are controlled by two bits,
MODSEL and 8064 which provide the screens as shown in
the following table

8064

0
0
1
1

MODSEL Video Screen Size

0 64 X 16
1 32 X 16
0 80 X 24
1 40 X 24

Table 2•4

With this information of the options available to the user we
can now view the actual operation of the circuit with the final
objectives in mind and see how they are achieved For the
rest of this section all references will be made to Figure 2·
16 The first task to be accomplished would be the screen
refresh and this is done by the CRTC or 68045 (U11) which
will generate the addresses continuously on its address
lines Then to allow the CPU access to the same memory
the address lines are multiplexed at U12, U14, and U15 on
opposite phases of the CRT clock The CPUs access liming
is then handed by the timing circuit described earlier

The data bus of the RAM (U16) is a two way bus with the
RAM as a source or destination on all accesses, the video
gate array (U17) is the destination on the screen refresh half
of the cycle, the 74LS373 (U36) is the destination on a read
of the RAM by the CPU, and the 74LS244 (U35) is the
source on writes to the RAM

The video gate array then gates the RAM data INVIDE, and
ENALTSET to determine the ROM addressing for these two
options and CHRADD to the 74LS283 (U13) which takes the
row address from the 68045 and adds a zero to the row ad·
dress or a minus one to form the character enhanced mode

The data out of the ROM is then sent back to the gate array
where ii Is then changed to a serial stream of data which is
synchronized with the data that would come from the graph·
ics board, GRAFVID. The signal CL166 will inhibit the data
out of the serial register and the signal ENGRAF enables
the graphics data, hence, if both are enabled the effect is an
overlay The output data is sent to U20 pin 9 where ii is
gated with one of two phases of the dot clock; then attar
being filtered to lower the R F I ii is output to the sweep
board

Hardware 36

Model 4 Port Bit Map

Port D7 D6 D5 D4 D3 D2 D1 DO

FC- FF Cass Cassette

(READ) data (MIRROR of PORT EC) data
500 bd 1500 bd

FC · FF {Note, also resets cassette data latch) cass, cassette

(WRITE) out data out

F8. FB Prntr Prntr Prntr Prntr
(READ) BUSY Paper Select Fault

F8-FB Prntr Prntr Prntr Prntr Prntr Prntr Prntr Prntr
(WRITE) D7 D6 D5 D4 D3 D2 D1 DO

EC EF (Any Read causes reset of Real Time Clock Interrupt)

EC-EF CPU X Enable Enable Mode Cass
(WRITE) Fast EX 1/0 Altset Select Mot On

E0 · E3 Receive Receive Xmit 10 Bus RTC C Fall C Rise
(READ) Error Data Empty Int Int Int Int

E0 · E3 Enable Enable Enable Enable Enable Enable Enable
(WRITE) Rec Err Rec Data Xmit Emp 10 Int RT Int CF Int CR Int

90- 93 X Sound
(WRITE) X Bit

B4 -87 Page Fix Upr Memory Memory Invert 80/64 Select Select
(WRITE) Memory Bit 1 Bit 0 Video Bit 1 Bit0

Table 2-3. 1/0 Port Map

Hardware 37

" A5 " 15~

:~-'-"--
24-----ft-5V

127

JPB(.~=:;-::;;i::::::::=::;~=::::::::;
JP7 ~+5V

" A2

" A7

20
~ROMA I
~

OP0-OP7

Figure 2-14. ROM Circuit

(Page 1 of Schematic)

Hardware 38

L
-~----e

'------------'-~~;1
~----------#--,--06~-:- -- ,, '}:, HI!~ =t:==..~ ~ ~ ~

tc1:::~~;,7J-~-1::::~1,JH [j :::i;! =>;::
.. "I

~- ·~· ·~-.".\J :I~~~M-I~ =

Hardware 39

Hardware 40

2.1.9 Keyboard

The interface to the keyboard is a matrix composed of ad
dress lines in one direction and data lines in the other The
address lines have two open collector butters (U26 and U40)
on the output to the keyboard

The input is pulled-up with an 820 ohm resistor and is then
fed into two CMOS Inputs (USS and U56) which act as a
driver on data lines

2.1.10 Real Time Clock

The Real Time Clock circuit in the Model 4 provides a 30 Hz
(in the 2 MHz CPU Mode) or 60 Hz (in the 4 MHz CPU
Mode) interrupt to the CPU By counting the number of inter
rupts that have occured, the CPU can keep track of the
lime The 60 Hz vertical sync signal from the video circuitry
is divided by two (2 MHz Mode) by U10 and the 30 Hz al
pin 9 of U46 is used to generate the interrupts In the 4 MHz
mode, the signal FAST places a logic low al pin 4 of U10,
causing the signal VSYNC to pass through U46 at its normal
rate and trigger interrupts at the 60 Hz rate Note that any
time interrupts are disabled, the accuracy of the clock
suffers

2.1.11 Line Printer Port

The printer status lines are read by the CPU by enabling
buffer U108 This butter will be enabled for any input from
port F8 or F9, or any memory read from location 37E8 or
37E9 when in the Model Ill mode For a listing of bit status,
refer to the bit map

After the printer driver software determines that the printer is
ready to receive a character (by reading the status), the
character to be printed is output to port F8 This latches the
character into U107, and simultaneously fires the one-shot
U63 to provide the appropriate strobe to the printer

2.1.12 Graphics Port

The graphics port on the Model 4 is provided to attach the
optional high resolution graphics board and provides the
necessary signals to interface not only to the CPU (such as
data lines, address lines, address decodes, and control
lines), but also the signals needed to synchronize the output
of the Video Circuit and the Graphics board and control to
provide features such as overlay

Hardware 41

Pin Number

2
3
4

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Signature

DO
D1
D2
D3
D4
D5
D6
D7
GEN'
DCLK
AO
A1
A2
J
GRAPVID
ENGRAF
DISBEN
VSYNC
HSYNC
RESET'
WAIT'
H
I
IN'
GND
+5
N/C
CL166
GND
+5
GND
+5
GND
+5

Table 2-5

Figure 2·17. Keyboard

(Page 4 of Schematic)

Figure 2-18. ATC

(Page 4 of Schematic)

Hardware 42

U62

~12~
~ LPRO !"3-<i..__/ II

SH 2
LPOUT

CIG

.,, ~
:·,K Gaj

F84
D3 :j r 17==~===:~:::=t:=============~~::

~14 15===t==~~~F8~2~0=~NY/A~:::=========j~29
~ 7 UICIS ofR19 FAULT 19

0 12 74LS244 13 c:::aFsie UNIT sEL D
28

07
9 8

25

II □FBl6 BLJSY D~~

II

-½ 4+s\,s
C24 201<

~· 7
+lsv u105

LS00 1-.r-:s, •o FB21 5 ---9 10-~----r"'---"DI

• 10 B 74LSl23 12-NC

II
'----,+sv

Figure 2-19. Printer Circuit

(Page 4 of Schematic)

U46 '12L--2

NC--D~63~1

r--°~~~~.
"'='" 27,34

-- LS32

~4~ ~s-q___/' 6 --,

I

tSVj---'

Figure 2-20. Sound

(Page 4 of Schematic)

Hardware 43

R43
27fl.l/2W

SPI

+sv

JG

2.1.13 Sound Port

The sound circuit is compatible with the optional sound
board on the older version of tt1e Model 4, and works in a
similar fashion Sound is generated by setting and clearing
data bit zero on successive OUTs to port 90H The state of
DO is latched in U18 which is amplified by Q2 to drive the
speaker (SP1)

2.1.14 1/0 Bus Port

The Model 4 Gate Array Bus is designed to allow easy and
convenient interfacing of 1/0 devices to the Model 4 The l/0
Bus supports all the signals necessary to implement a d&
vice compatible with the Z-BOs 1/0 structure That is:

Addresses:

AO to A7 allow selection of up to 256 input and 256 output
devices if external 1/0 is enabled

Ports BOH to OFFH are reserved for System use

Data:

DBO to DB7 allow transfer of 8-bit data onto the pro
cessor data bus if external l/0 is enabled

Control Lines:

a IN" - Z-80 signal specifying that an input is in
progress Gated with IORQ

OUT" - Z-80 signal specifying that an output is in
progress Gated with IORQ

c RESET' - system reset signal

IOBUSINT" - input to the CPU signaling an inter
rupt from an 1/0 Bus device if 1/0 Bus interrupts are
enabled

e IOBUSWAIT" - input to the CPU wait line allowing
1/0 Bus device to force wait states on the Z-80 if
external 110 is enabled

EXTIOSEL • input to CPU which switches the 1/0
Bus data bus transceiver and allows an INPUT in
struction to read 1/0 Bus data

g M1 • - and IORQ· - standard Z-80 signals

The address line, data line, and control lines a to c and e lo
g are enabled only when the ENEXIO bit is set to a one

To enable 1/0 interrupts, the ENIOBUSINT bit in the CPU I0-
PORT EO (output port) must be a one However, even if it is
disabled from generating interrupts, the status of the IOBU
SINT' line can still read on the appropriate bit of CPU JO
PORT EO (input port)

See Model 4 Port Bit assignment for OFF, OEC, and OEO

The Model 4 CPU board is fully protected from foreign 1/0
devices in that all the 1/0 bus signals are buffered and can
be disabled under software control To attach and use an 1/0
device on the 1/0 Bus, certain requirements (both hardware
and software) must be met

For input port device use, you must enable external 1/0 de
vices by writing to port OECH with bit 4 on in the user soft
ware This will enable the data bus, address lines, and
control signals to the 1/0 Bus edge connector When the in
put device is selected, the hardware will acknowledge by as
serting EXTIOSEL • low This switches the data bus
transceiver and allows lhe CPU lo read lhe contents of lhe I/
O Bus data lines See Figure 2-21 for the timing EXTIO
SEL • c2.n t:,9 '.Jl?r11?!'2t1?d ti~, f\!/1.f\!Qinc; It-.! ern:-1 ~hi? I!() rnrl

address

Oulput port device use is the same as the input port device
in use, in that lhe external 1/0 devices must be enabled by
writing to port OECH with bit 4 on in the user software - in
the same fashion

For either input or outpul devices, lhe tOBUSWAIT" control
line can be used in the normal way for synchronizing slow
devices to the CPU Note that since dynamic memories are
used in lhe Model 4, the wait line should be used with cau
tion Holding the CPU in a wail slale for 2 msec or more
may cause loss of memory contents since refresh is inhib~
iled during this time It is recommended that the fOBUS
WAIT' line be held active no more than 500 msec wilh a
25% duty cycle

The Model 4 will support Z-80 mode 1 inlerrupls A RAM
jump table is supported by the LEVEL II BASIC ROMs and
the user must supply the address of his inlerrupl service
routine by writing !his address to locations 403E and 403F
When an inlerrupt occurs, the program will be vectored to
the user supplied address if 1/0 Bus inlerrupts have been
enabled To enable 1/0 Bus interrupts, the user mus! set bit
3 of Port OEOH

The aclual implementation is shown in Figure 2-22 The data
is buffered in both directions using a 74LS245 (U101). The
addresses are buffered wilh a 74LS244 (U102), and the
control lines out are buffered by a 74LS367. Nole thal RE
SET' is always enabled out, this is to power-up resel any
device or clear any device before enabling the bus structure
This prevents any user from tying-up lhe bus when enabling
the port in an unknown state

Hardware 44

Input or Output Cycles

T, T, T ••

All A7

IORQ•

RD•

DATA BUS

WAIP

DATA BUS OUT

~lnMlrted by zao CPU

Input or Output Cycles with Wait States

T, T, T.·

AO A7

DATA BUS

Ro•

WAIT-

DATA BUS OUT

WR"

tEXTIOSEL•

-,n•nod by zeo CPU

tCoincid1nt wilh IOA□ • only on INPUT cycle

Figure 2·21. 1/0 BUS TIMING DIAGRAM

Hardware 45

T, T,

T. T,

READ
CYCLE

WRITE
CYCLE

READ
CYCLE

WRITE
CYCLE

O0-D7

00 9 -~ DI
02

7
03

6
04 5
05

o•
07

R54
1s0n

+5V

A0 17
A I

15
A2 13
A3

II
A4

2
AS
AG

!7 A7
R56
4,7K

+sv
U!04
LS16

~s{l)o-s
R53

+sv Ll
10
:·

7

"

LSl6

~1-IJ>o-2 10

~:

·~· II XD0
XO I

12
13

XO2
XO3

14
15 XO4 9

U!0l 16 XOS II
74LS245 17

XO6
13

XO7
18 15

19

EXTIOSEL 43

XA0
17

XA I
19 y! XA2 21

XA3
23

XA4 25
Ul02 ~IB XAS

74LS244 _:! 27
XA6 r;~ XA7

9 \>
I 19

-[>-
Ul03 ~ 2

....+--"-R..a..~T-----12

NC--14

74LS367 II ---<I--------'
13--NC

U41
LS14

15

¾

2-<J-,~
Ul04 Ul05
7416 LS02

SHI 3 5)-"w,,,AiccT_-!--4 -c<J]- 3 -- 4 -U: ___________ -".xw,,,A::.,IccT ___ ---f,,41

SH 5 XINT

RESET

+sv

Figure 2-22. 1/0 Port

(Page 4 of Schematic)

Hardware 46

NC---045

*--------ID2~50 EVEN

J48J5

Data Bit Function
DO Selects Drive 0 when set•
D1 Selects Drive 1 when set'
D2 Selects Drive 2 when set'
D3 Selects Drive 3 when set•
D4 Selects Side 0 when reset

Selects Side 1 when set
D5 Write precompensation

enabled when set dis-
abled when reset

D6 Generates WAIT if set
D7 Selects MFM mode ii set

Selects FM mode if reset

'Only one of these bits should be set per output

Hex D flip-flop U79 (74L174) latches the drive select bits,
side select and FM' MFM bits on the rising edge of the con
trol signal DRVSEL' Gate Array 4 4(U76) is used to latch
the Wait Enable and Write precompensation enable bits on
the rising edge of DRVSEL' The rising edge of DRVSEL'
also triggers a one-shot (Internal to U76) which produces a
Motor On to the disk drives The duration of the Motor On
signal is approximately three seconds The spindle motors
are not designed for continuous operation. Therefore, the in
active state of the Motor On signal is used to clear the Drive
Select Latch, which de-selects any drives which were previ
ously selected The Motor On one-shot is retriggerable by
simply executing another OUT instruction to the Drive Select
Latch

Walt State Generation and WAITIMOUT Logic

As previously mentioned, a wait state to the CPU can be ini
tiated by an OUT to the Drive Select Latch with D6 set Pin
10 of U76 will go high after this operation This signal is in
verted by 1 /4 of U96 and is routed to the CPU where it
forces the ZBOA into a wait state The ZB0A will remain in
the wait state as long as WAIT' is low Once initiated, the
WAIT' will remain low until one of five conditions is satisfied
If INTRO, DAO, or RESET inputs become active (logic
high), it causes WAIT' to go high which allows the 280 to
exit the wait state An internal timer on U70 serves as a
watchdog timer to insure that a wait condition will not persist
long enough to destroy dynamic RAM contents This internal
watchdog timer logic will limit the duration of a wait to 1024
µsec, even if the FDC chip should fail to generate a DAO or
an INTRO

If an OUT to Drive Select Latch is initiated with D6 reset
(logic low), a WAIT is still generated The internal timer on
U70 will count to 2 which will clear the WAIT state This al
lows the WAIT to occur only during the OUT instruction to
prevent violating any Dynamic RAM parameters

NOTE: This automatic WAIT will cause a 5 to 1 µsec wait
each time an out to Drive Select Latch is performed

Clock Generation Logic

A 16 MHz crystal oscillator and Gate Array 44 (U76) are
used to generate the clock signals required by the FDC
board The 16 MHz oscillator is implemented internal to U76
and a quartz crystal (Y2) The output of the oscillator is di
vided by 2 to generate on 8 MHz clock This is used by the
FDC 1773 (U75) for all internal timing and data separation
U76 further divides the 16 MHz clock to drive the watchdog
timer circuit

Disk Bus Output Drivers

High current open collector drivers U96, 94 and 93 are used
to buffer the output signals from the FDC circuit to the disk
drives

Write Precompensation and
Write Data Pulse Shaping Logic

All write precompensation is generated internal to the FDC
chip 1773 (U75) Write Precompensation occurs when WG
goes high and write precompensation is enabled from the
software. ENP is multiplexed with ADY and is controlled by
WG at pin 20 of U75 Write data is output on pin 22 of U75
and is shaped by a one-shot (1/2 of U98) which stretches
the data pulses to approximately 500 nsec

Clock and Read Data Recovery Logic

The Clock and Read Data Recovery Logic is done internal
to the 1773 (U75)

Floppy Disk Controller Chip

The 1773 Is an MOS LSI device which performs the
functions of a floppy disk formatter/controller In a sin
gle chip Implementation. The following port addresses
are assigned to the Internal registers of the 1773 FOC
chip:

Port No.

F0H

F1H
F2H
F3H

Function

Command/Status
Register
Track Register
Sector Register
Data Register

Hardware 47

2.1.15 Cassette Circuit

The cas!:.cltc ._ • .,rite circuitr; latches the two LSBs (DO and
01) for any output to port FF (hex) The outputs of these
latches (U51) are then resistor summed to provide three dis
crete voltage levels (500 Baud only) The firmware toggles
the bits to provide an output signal of the desired frequency
at the summing node

There are two types of cassette Read circuits - 500 baud
and 1500 baud The 500 baud circuit is compatible with both
Model I and 111 The input signal is amplified and filtered by
Op amps (U23 and U54) Part of U22 then forms a Zero
Crossing Detector, the output of which sets the latch U37. A
read of Port FF enables buffer U52 which allows the CPU to
determine whether the latch has been set, and simultane
ously resets the latch The firmware determines by the tim
ing between settings of the latch whether a logic ··'one" or
"·zero" was read in from the tape

The 1500 baud cassette read circuit is compatible with the
Model Ill cassette system The incoming signal is compared
to a threshold by part of U22 U22 s output will then be
either high or low and clock about one-half of U37, depend
ing on whether it is a rising edge or a falling edge If inter
rupts are enabled, the setting of either latch will generate an
interrupt As in tt1e 500 baud circuit, the firmware decodes
the interrupts into the appropriate data

For any cassette read or write operation, the cassette relay
must be closed in order lo start the motor of the cassette
deck A write to port EC hex with bit one set will latch U53,
which turns on transistor 03 and energizes the relay K1 A
subsequent write to this port with bit one clear will clear the
latch and de-energize the relay

2.1.16 FDC Circuit

The TRS-80 Model 4 Floppy Disk Interface provides a stan
dard 5-1 /4" floppy disk controller The Floppy Disk Interface
supports single and double density encoding schemes Write
precompensation can be sottware enabled or disabled be
ginning at any track, although the system sottware enables
write precompensation for all tracks greater than twenty-one
The amount of write precompensation is 125 nsec and is not
adjustable. One to four drives may be controlled by the in
terface All data transfers are accomplished by CPU data re
quests In double density operation, data transfers are
synchronized to the CPU by forcing a wait to the CPU and
clearing the wail by a data request from the FOG chip. The
end of the data transfer is indicated by generation of a non
maskable interrupt from the interrupt request output of the
FDC chip A hardware watchdog timer insures that any error
condition will not hang the wait line to the CPU for a period
long enough to destroy RAM contents

Control and Data Buffering

The Floppy Controller is an 1/0 port~mapped device whir.h
utilizes ports E4H, FOH, F1 H, F2H, F3H, and F4H The de
coding logic is implemented in the Address Decoding (for
more information see Port Map) U78 is a bi-directional, 8-bil
transceiver used to buffer data to and from the FOG and
RS-232 circuits The direction of data transfer is controlled
by the combination of control signals DISKIN", RDINTSTA·
TUS", RDNINSTATUS", and RS232IN" If any signal is active
(logic low), U78 is enabled to drive data onto the CPU data
bus If all signals are inactive (logic high), U78 is enabled to
receive data from the CPU board data bus A second butter
U77 is used to buffer the FOG chip data to the FDC/RS232
Data Bus, (BD0-8D7) U77 is enabled by Chip Select and its
direction controlled by DISKIN" Again, if DISKIN" is active
(logic low), data is enabled to drive from the FOG chip to the
Main Data Susses If DISKIN" is inactive (logic high), data is
enabled to be transferred to the FOG chip

Non-maskable Interrupt Logic

,-._,~ ~ -
1

• • (' ,...,.r} :- ,,1 ,,., 1 ,,...h ,-1,..,,,., i-,;,,.. na: ..,..,.-1 n7

on the rising edge of the control signal WRNMIMASKREG"
This enables the conditions which will generate a non-mask
able interrupt to the CPU The NMI interrupt conditions
which are programmed by doing an OUT instruction to port
E4H with the appropriate bits set If data bit 7 is set, an FOG
interrupt Is enabled to generate an NMI interrupt If data bit
7 is reset, interrupt requests from the FOG are disabled. If
data bit 6 is set, a Motor Time Out is enabled to generate an
NMI interrupt. If data bit 6 is reset, interrupts on Motor Time
Out are disabled. An IN instruction from port E4H enables
the CPU to determine the course of the non-maskable inter
rupt Data bit 7 indicates the status of FOG interrupt request
(INTRO) (O=true, 1 =false) Data bit 6 indicates the status
of Motor Time Out (O = true, 1 = false) Data bit 5 indicates
the status of the Reset signal (O=lrue, 1 =false) The con
trol signal RDNMISTATUS' gates this status onto the CPU
data bus when active (logic low)

Drive Select Latch and Motor ON Logic

Selecting a drive prior to disk 1/0 operation is accomplished
by doing an OUT instruction to port F4H with the proper bit
set The following table describes the bit allocation of the
Drive Select Latch:

Hardware 48

:r:
Ill a.
:E
Ill
ii, ...
<O

,,~. ••Qa-~c

. :,: _r,: '""" '" :··~ ·wp- k. [' .µ· " -·1 I ,,.7~~.
,., , I"'"'""' , :~: }:;&-r~--~n I .e-•Q· ,-<J-,,

},i,_i~

~

I,,, I ;t5='.

Figure 2-23. Circuit Cassette

(Page 4 of Schematic)

l

Hardware 50

2.1.17 RS·232C Circuit

RS-232C Technical Description

The RS-232C circuit for the Model 4 computer supports
asynchronous serial transmissions and conforms to the EIA
RS-232C standards al the input-output interface connector
(J3) The heart of the circuit is the TR1865 Asynchronous
Receiverrrransmitter U84 II performs the job of converting
the parallel byte data from the CPU to a serial data stream
including start, stop, and parity bits For a more detailed de
scription of how this LSI circuit performs these functions, re
fer to the TR1865 data sheets and application notes. The
transmit and receive clock rates that the TR1865 needs are
supplied by the Baud Rate Generator U104 This circuit
takes the 5.0688 MHz supplfed by the system timing circuit
and the programmed information received from the CPU
over the data bus and divides the basic clock rate to provide
two clocks The rates available from the BRG go from 50
Baud to 19200 Baud See the BAG table for the complete
list

Interrupts are supported in the RS-232C Circuit by the Inter
rupt mask register and the Status register internal to Gate
Array 4 5 (U82) The CPU looks here to see which kind of
interrupt has occurred Interrupts can be generated on rev
ceiver data register full, transmitter register empty, and any
one of the errors - parity, framing, or data overrun This al
lows a minimum of CPU overhead in transferring data to or
from the UART The interrupt mask register is port E0 (write)
and the interrupt status register is port E0 (read) Refer to
the 10 Port description for a full breakdown of all interrupts
and their bit positions

All Model I, 111, and 4 software wrillen for the RS-232C inter
face is compatible with the Model 4 Gate Array RS-232C cir
cuit, provided the software does not use the sense switches
to configure the interface The programmer can get around
this problem by directly programming the BRG and UART for
the desired configuration or by using the SETCOM com
mand of the disk operating system to configure the interface
The TRS-80 RS-232C Interface hardware manual has a
good discussion of the RS-232C standard and specific pro
gramming examples (Catalog Number 26-1145)

BRG Programming Table

Transmit/
Receive Suported

Nibble Baud 16X sEfloM Loaded Rate Clock
OH 50 0 . .8 kHz Yes
1H 75 1.2 kHz Yes
2H 110 1.76 kHz Yes
3H 134.5 21523 kHz Yes
4H 150 2 4 kHz Yes
SH 300 4 8 kHz Yes
6H 600 9 6 kHz Yes
7H 1200 19.2 kHz Yes
SH 1800 28.8 kHz Yes
9H 2000 32.081 kHz Yes
AH 2400 38 4 kHz Yes
BH 3600 57 6 kHz Yes
CH 4800 76 8 kHz Yes
DH 7200 1152 kHz Yes
EH 9600 153.6 kHz Yes
FH 19200 307 2 kHz Yes

Plnout Listing
The RS-232C circuit is port mapped and the ports used are
EB to EB Following is a description of each port on both in
put and output

Port Input Output
EB Modem status Master Reset, enables

UART control register
load

EA UART status UART control register
load and modem control

E9 Not Used Baud rate register load
enable bit

EB Receiver Holding Transmitter Holding
register register

The following list is a pinout description of the DB-25 con
nector (P1)

Pin No.
1
2

3
4

5
6
7
8

19
20
22

Signal
PGND (Protective Ground)
TD (Transmit Data)
RD (Receive Data)
ATS (Request to Send)
CTS (Clear To Send)
DSR (Data Set Ready)
SGND (Signal Ground)
CD (Carrier Detect)
SRTS (Spare Request to Send)
DTR (Data Terminal Ready)
RI (Ring Indicate)

Hardware 51

.
iii

Hardware 52

·s
" -~ " 0 ~
u E
"' Q)
"' .c
"' " (/) (/)

C: -. 0

~ "' N .,
e g,
:::, 0.

"' -u::

Model 4 Gate Array
1/0 Pin Assignments

J1 J2 J3 J4 J5

Pin Pin Pin Pin Pin
No. Signal No. Signe! No. Slgnal No. Signal No. Signal

1 GND 1 GND 1 PGND 1 XDO 1, XDO
2, 2 2 TD 2, GND 2 GND
3, GND 3, GND 3 RD 3. XD1 3 XD1
4, 4, 4 RTS 4, GND 4 GND
5. GND 5, GND 5 CTS 5, XD2 5 XD2
6, 6 6 DSR 6, GND 6 GND
7. GND 7 GND 7 SGND 7, XD3 7 XD3
8, IPE• 8 1p1• 8, CD 8 GND 8 GND
9, GND 9 GND 9, 9 XD4 9 XD4

10 Os2· 10 DS0' 10, 10 GND 10 GND
11. GND 11 GND 11 11 XD5 11- XD5
12, D83' 12, DS1' 12, 12 GND 12 GND
13, GND 13 GND 13. 13 XD6 13. XD6
14, 14 14, 14 GND 14. GND
15, GND 15, GND 15 15 XD7 15. XD7
16 MOTNE' 16, MOTONI' 16 16 GND 16. GND
17 GND 17 GND 17 17 XA0 17. XA0
18 DIRE' 18, DIRI' 18 18 GND 18, GND
19 GND 19, GND 19 SRTS 19 XA1 19 XA1
20 STEPE' 20, STEPI' 20 DTR 20 GND 20 GND
21 GND 21 GND 21 21 XA2 21 XA2
22 WOE' 22, wo1· 22 RI 22 GND 22 GND
23 GND 23, GND 23 23, XA3 23 XA3
24 WGE' 24 WGI' 24 24, GND 24 GND
25 GND 25 GND 25 25 XA4 25, XA4
26 TRK0E' 26 TRK0I' 26 26, GND 26, GND
27, GND 27 GND 27 27 XA5 27, XA5
2R WPRTE' 28 WPRTI' 28 28 GND 28. GND
29, GND 29 GND 29 29, XA6 29, XA6
30, RDE' 30 RDI' 30 30 GND 30, GND
31. GND 31 GND 31 31. XA7 31- XA7
32, SDSELE 32, SDSELI 32 32, GND 32, GND
33, GND 33 GND 33 33, XIN' 33 XIN'
34, 34 34 34, GND 34. GND

35 XOUT' 35. XOUT'
36 GND 36, GND
37 XRESET' 37. XRESET'
38 GND 38. GND
39 XINT' 39 XINT'
40 GND 40 GND
41 XWAIT' 41 XWAIT'
42 GND 42 GND
43, EXTIO· 43 EXTIO·
44 SEL• 44 SEL'
45 GND 45 GND
46 NC 46 NC
47, GND 47. GND
48 XMI' 48 XMI0
49. GND 49 GND
50, XIDRQ' 50 XIDRQ•

GND GND

Hardware 53

Model 4 Gate Array
1/0 Pin Assignments

J6 JB J9 J12

Pin Pin Pin Pin
No. Signal No. Signal No. Signal No. Signal

1 1 1 1 DO
2 GND 2 2 GND 2 D1
3 PD0 3 3 3 D2
4 GND 4. VSYNco· 4 CASSETTE- 4 D3
5 PD1 5 5 IN 5 D4
6 GND 6 HSYNCO 6 CASSETTE- 6. D5
7 PD2 7. 7 OUT 7 D6
8 GND 8 8. 8 D7
9 PD3 9 9 9 GEN•

10 GND 10 10 10 DCLK
11 PD4 11 11 11 AO
12 GND 12 12 12 A1
13 PD5 13. 13 13 A2
14 GND 14. 14. 14 J
15 PD6 15. 15. 15 GRAPVID
16. GND 16 16. 16 ENGRAF
17 PD7 17. 17 17 DISBEN
18 GNU 18 ltl. iB VSYNC
19 NIA 19 19 19 HSYNC
20. GND 20 20 20 RESET"
21 BUSY 21 21 21 WAIT"
22 GND 22 22 22 H
23 OUT PAPER 23 23 23 I
24 GND 24. 24. 24. IN"
25 UNIT SEL 25 GND
26 NC 26 +5V
27 GND 27
28 FAULT 28 CL166
29 29 GND
30 30 +5V
31 NC 31 GND
32. 32. +5V
33 NC 33 GND
34 GND 34. +5V

Hardware 54

SECTION Ill

4P THEORY OF OPERATION

Hardware 55

3.1 MODEL 4P THEORY OF OPERATION

3.1.1 Introduction

Contained in the following paragraphs is a description of the
component parts of the Model 4P CPU It is divided into the log·
ical operational functions of the computer All components are
localed on the Main CPU board inside the case housing Refer
to Section 3 for disassembly assembly procedures

3.1.2 Reset Circuit

The Model 4P reset circuit provides the neccessary reset
pulses to all circuits during power up and reset operations R25
and C218 provide a time constant which holds the input of U121
low during power·up This allows power to be stable to all cir·
cuits before the RESET' and RESET signals are applied When
C218 charges to a logic high. the output of U121 triggers the
input of a retriggerable one·shot multivibrator (U1) U1 outputs
a pulse with an approximate width of 70 rnicrosecs When the
reset switch is pressed on the front panel. this discharges C218
and holds the input ol U121 low until the switch is released On
release of the switch C218 again charges up triggering U121
and U 1 to reset the microcomputer

3.1.3 CPU

The central processing unit (CPU) ot the Model 4P microcom•
puter is a Z80A microprocessor The Z80A is capable ol run•
ning in either 2 MHz or 4 MHz mode The CPU controls all
functions of the microcomputer through use of its address lines
(A0·A 15). data lines (D0-D7). and control lines (M1. IOREO
!RD. 1WR. 1MREO, and RFSH) The address lines (AO-A 15)
are buffered to other ICs through two 74LS244s (U68 and U26)
which are enabled all the time with their enables pulled to GND
The control lines are buffered to other ICs through a 74F04
(U86) The data lines (D0-D7) are buffered through a bi-direc
tional 74LS245 (U71) which is enabled by BUSEN' and the di•
rection is controlled by BUSDIR'

3.1.4 System Timing

The main timing reference of the microcomputer with the ex
ception of the FDC circuit comes from a 20 2752 MHz Crystal
Oscillator (Y1) This reference is divided and used for gener
ating all necessary timing for the CPU video circuit and RS·
232-C circuit The output of the crystal oscillator is filtered by a
territte bead (FB5). 470 ohm resistor (R46) and a 68 pl ca
pacitor (C242) Alter being liltered it is led into U126 a 16R6A
PAL (Programmable Array Logic) where it is divided by 2 to
generate a 10 1376 MHz signal (1 OM) for the 64 X 16 video dis
play U126 divides the 20 2752 MHz by 4 to generate a 5 0688
MHz signal (RS232CLK) for the baud rate generator in the RS·
232-C circuit The CPU clock is also generated by U126 which
can be either 2 or 4 MHz depending on the state of FAST input

(pin 9 of U126) II FAST is a logic low the 20 2752 MHz is di·
vided by 10 wl1ich generales a 2 2752 MHz signal II FAST 1s a
logic l1igh the 20 2752 MHz is divided by 5 wh1cl1 generates a
4 05504 MHz signal The CPU clock (PCLK) is fed througl1 an
active pull-up circuit which generates a full S•volt swing with fast
rise and fall times required by t11e Z80A U 126 t11e 16R6A PAL
generates all symmetrical output signals and also does not al
low the PCLK output to short cycle or generate a low or high
pulse under 11 O nanoseconds which the ZBOA also requires
Refer to System Timing Fig 3·2

3.1.4.1 Video Timing

The video liming is controlled by a 1 0LS PAL (U127) and a lour·
bit synchronous counter U128 (74LS161) These two ICs gen·
erate all the necessary timing signals for the four video modes:
64 x 16. 32 x 16, 80 x 24. and 40 x 24 Two reference clock sig·
nals are required for the four video modes One reference
clock the 10 1376 MHz signal (1 OM). is generated by U 126 and
is used by the 64 x 16 and 32 x 16 modes The second refer
ence clock is a 12 672 MHz (12M) signal which is generated by
a Phase Locked Loop (PLL) circuit and is used by the 80 x 24
and 40 x 24 modes The PLL circuit consists of U147 (74LS93).
U148 (NE564 PLL). and U149 (74LS90) The original 20 2752
MHz clock is divided by 16 through U147 which generates a
1 2672 MHz signal The output ol U 14 7 is reduced in amplitude
by the voltage divider network R27 and R28 and the output is
coupled to the reference input of U148 by C227

The PLL (NE564) is adjusted to oscillate at 12 672 MHz by the
tuning capacitor C231 This 12 672 MHz clock is then divided
by 10 through U149 to generate a second 1 2672 MHz signal
which is led to a second input of U148 The two 1 2672 MHz
signals are compared internally to the PLL where it corrects the
12 672 MHz output so it is synchronized with t11e 20 2752 MHz
clock

MODS EL and 8064 • signals are used to select the desired
video mode 8064 • controls which reference clock is used by
U127 and MODS EL controls the single or double character
width mode Refer to the following chart for selecting each
video mode

8064' MODSEL Video Mode
0 0 64 X 16
0 32 X 16

0 80 X 24
40 X 24

'This is lhe state to be written to latch U89 Signal is inverted
before being input to U 127

Hardware 57

I

"' a.
" "' ro
CJ1
CD

T

TIMING ~

A = ADDRESS LINES
C = CONTROL LINES
D = DATA LINES
T = TIMING

A

CPU C

D

A- -"' C "" "' - "' ::,
D "'

'
.......

-
D
~ ROM

""" ,--,.. ~ ~
= KEYBOARD

"' ::,

"' -
*

CRTC - AND
VIDEO

~ CIRCUIT

'r
VIDEO -~ RAM

-
- RAM

◄ rffl

1/0
DECODE .,__

A

C

D

ria¢

-o

~~ .
IC, PORT

- .
- SJUND - RS232

1911 J PJRT • ~
,--411 ~ SERIAL

CHIP

- • 'I' • -

~~~~ROLLA - GR,\PHICS .. , - r i'ltit B0,~RD 

~ 
POHT Hi~ CHIP 

- ~ -
~ LI'lE INTERNAi - PRINTER I'll" ....... I/0 BUS 

11111-1!111 
PO,T 

11111 
PORT , ] 

f]uF * ~ 

"' ., EXTERNAi 

"' 1/0 BUS 
II "' PORT ::, -"' ---

] 
Figure 3-1. :vtodel 4P Functional Bloclt Diagram 



:::c 
0) 

cl. 
::; 
0) 

ro 
01 
(0 

2/o MC, 2/oI 
(Ul26 PIN 1,2> 

2/oM 
(Ul26 PIN 12 J 

1/oM j 
(Ul26 PIN 16> 

1,.IS 
(Ul26 PIN 15> 

5S 
(Ul26 PIN 14> 

2.5S 
(Ul26 PIN l3J 

PSET (FAST) 
(Ul26 PIN 18 l 

PCLK (FASTJ 
(Ul26 PIN 191 

PSET (FAST) 
(Ul26 PIN 18 l 

PCLK (FAST> 
(Ul26 PIN 191 

RS232CLK 
Ul26 PIN 17> 

Figure 3-2. System Timing 



DCLK, the reference clock selected, is output from U127 
DCLK is fed back into U127 for internal timing reference and 
is also fen lo the clock input of U128 (74LS161) U128 is 
configured to preload with a count of 9 each time it reaches 
a count of o This generates a signal output of TC (128 pin 
15) that occurs at the start of every character time of video 
output TC is used to generate LOADS" (Load Shift Regis
ter) QA and QC of U128 are used to generate SHIFT", 
XAOR?', CRTCLK and LOAD" for proper timing for the four 
video modes QA, QB, and QC which are referred to as H, I, 
and J are fed to the Graphics Port J7 for reference timings 
of Hires graphics video. Refer to Video Timing, Figs 3-3 and 
3-4 for timing reference. 

3.1.5 Address Decode 

The Address Decode section will be divided into two sub
sections: Memory Map decoding and Port Map decoding 

3. L5. 1 Memory Map Decoding 

Memory Map Decoding is accomplished by a 16L8 PAL (U109) 
Four memory map modes are available which are compatible 
vvi\11 ii It' iviuUt:i ill a11J iviuJd..; 111ii...1ui..,u11q.1uie::i .::i A .;,c;cund ~ CLC 
PAL (U110) is used in conjunclion with U109 for the memory 
map control which also controls page mapping of the 32K RAM 
pages Refer to Memory Maps below 

3. L5.2 Port Map Decoding 

Port Map Decoding is accomplished by three 74LS138s (U87 
U88, and U107) These ICs decode the low order address (AO
A7) from the CPU and decode the port being selected The IN' 
signal from U 108 enables U87 which allows the CPU to read 
from a selected port and the our signal, also from U108 en
ables U88 which allows the CPU to write to the selected port 
U107 only decodes the address and the IN" and OUT" signals 
are ANDed with the generated signals 

3.1.6 ROM 

The Model 4P contains only a 4K x 8 Boot ROM (U70) This 
ROM is used only to boot up a Disk Operating System into 
the RAM memory If Model Ill operation or DOS is required, 
then the RAM from location 0000-37FFH must be loaded with 
an image of the Model Ill or 4 ROM code and then executed 
A file called MODEL NIii is supplied with the Model 4P which 
contains the ROM image for proper Model Ill operation On 
power-up, the Boot ROM is selected and mapped into loca
tion 0000-0FFFH. After the Boot Sector or the ROM Image is 
loaded, the Boot ROM must be mapped out by OUTing to 
port 9CH with DO set or by selecting Memory Map modes 2 
or 3 In Mode 1 the RAM is write enabled for the full 14K 
This allows the RAM area mapped where Boot ROM is lo· 
caled to be written to while executing out of the Boot ROM 
Reier to Memory Maps 

The Model 4P Boot ROM contains all the code necessary to 
initialize hardware detect options selected from the keyboard 
read a sector lrom a hard disk or floppy and load a copy ol ll1e 
Model Ill ROM Image (as mentioned) into the lower 14K of 
RAM 

The firmware 1s divided into the following routines 

Hardware lnitializalion 
Keyboard Scanner 

Control 
Floppy and Hard Drsk Driver 
Disk Directory Searcher 
File Loader 
Error Handler and Displayer 
RS-232 Boot 
Diagnostic Package 

Theory of Operation 

This section describes the operation of various routines 1n the 
ROM Normally the ROM is not addressable by normal use 
However there are several routines that are available through 
fixed calling locations and these may be used by operating sys
tems that are booting 

On a power-up or RESET condition the Z80 s program counter 
is set lo address O and tt,e boot ROM is switched-in The mem
ory map of the system is set to Mode O I See Memory Map for 
details) This will cause the ZSO to fetch instructions from the 
boot ROM 

The Initialization section of the Boot ROM now performs these 
functions: 

Disables maskable and non-maskable interrupts 
Interrupt mode 1 is selected 
Programs the CRT Controller 
Initializes the boot ROM control areas in RAM 
Sets up a stack pointer 
Issues a Force Interrupt to the Floppy Disk Controller 
to abort any current activity 
Sets lt1e system clock lo 4mhz 
Sets the screen lo 64 x 16 
Disables reverse video and the alternate character 
sets 

10 Tests for··· · key being pressed' 
11 Clears all 2K of video memory 

• This is a special test If the · is being pressed then 
control is transferred lo the diagnostic package in the 
ROM All other keys are scanned via the Keyboard 
Scanner 

Hardware 60 



HIM, 12M 

DCLK 

DOT* 

H -- -- -- -
I __J I ' I I I I I I ' r 
J l 

I TC r7 r7 f7 
"' a. 
:;: 
"' MAJ'! ci, 

':! 
SHIFT* 

LOADS* LJ LJ LJ 
LOAD* LI LI LI 

CRTCLK 

XADR7* 

Figure 3-3. Video Timing 64 x 16 Mode 80 x 24 Moae 



I 

"' a. 
:E 
"' cil 
0, 
I\) 

1,0M, 12M 

DCLK 
DOT* 

H 

r--1 
J----

L__J"'"7-__J 
___ _J 

I r 
TC ---~n~ _____________ _,r,.._ ______________ _,,r,~-----

MA,0 

SHIFT* 

LOADS*---..... 

LOAD*-----

CRTCLK ------. 

XADR7* ------...1 

Figure 3-4. Video Timing 

___ _j 

LJ 
U 

-, I 

32 x 16 Mode 4J x 24 Mode 



The Keyboard scanner is now called It scans the keyboard for 
a set period of time and returns several parameters based on 
which, ii any, keys were pressed 

The keyboard scanner checks for several dillerent groups of 
keys These are shown below: 

Function Group 
<F1 -· 
•cF2> 
<F3 · 
<1 -· 
<2.• 
<3> 

< Left-Shilt · 
<Right-Shilt-. 

-·Ctrl.· 

<Caps • 

Special Keys 
<P. 
-·L . 
<N> 

Selecllon Group 
A 
B 
C 
D 

E 
F 
G 

Misc Keys 
Enter 
Break · 

When any key in the Function Group is pressed it is recorded 
in RAM and will be used by the Control routine in directing the 
action of the boot II more than one ol these keys are pressed 
during the keyboard scan the last one detected will be the one 
that is used The Function group keys are currently defined as 

·F1>or<1 
<F2 · or <2> 
<F3> or <3 • 
•· Left-Shilt · 
<Right-Shift · 
<Ctrl · 
<Capsc-

Will cause hard disk boot 
Will cause lloppy disk boot 
Will force Model Ill mode 
Reserved for future use 
Boot from RS-232 port 
Reserved for future use 
Reserved for future use 

The Special keys are commands to the Control routine which 
direct handling of the Model 111 ROM-image Each key is de· 
tected individually 

<P> 

<N 

When loading the Model Ill 
ROM image the user will be 
prompted when the disks can 
be switched or when ROM 
BASIC can be entered by 
pressing Break 
Instructs the Control roul!ne !o 
not load the Model Ill ROM 
image even ii ii appears tllat 
the operating system being 
booted requires it 

L . Instructs the Control routine to 
load the Model Ill ROM image 
even ii it is already loaded This 
is useful ii the ROM image has 
been corrupted or when switch· 
ing ROM images (Note that 
this will not cause the ROM
image to be loaded ii the boot 
sector check indicates that the 
Model Ill ROM image is not 
needed Press F3 or F3 
and L · to accomplish that 

The Selection group keys are used in determining which file will 
be read from disk when the ROM image is loaded For details 
ot this operation. see the Disk Directory Searcher II more than 
one of the Selection group keys are pressed the last one de
tected will be the one that is used 

The Miscellaneous keys are 

Break · 

Enter · 

Pressing this key Is simply re
corded by setting location 
405BH non-zero II Is up lo an 
operating sys!em to use this 
flag ii desired 
Terminates the Keyboard rou
tine Any other keys pressed up 

to ll1at lime will be acted upon 
Enter · is useful for experi

enced users who do not want to 
wail until !he keyboard timer 
expires 

The Control section now takes over and follows the following 
flowchart 

Hardware 63 



Begin 

Goto ( l l 
(Hard Disk Boot l 

2] 
(Floppy Boot) 

Got.a I 4 l 
I HS-232 Boot l 

no valid Function keys 

Hardware 64 



Display 
Floppy Disk 
Error 
Message 

No 

Stop 

C 

Set Transfer 
Address to 
4).fl.fll-1 
Note: 2 

Note: l 

Hardware 65 

D 

3l---~ 

Attempt to 
locate 

~~M Image 

Floppy Disk 
Note: 4 

Write-enable 
.fl-37FFH 
{ Mode 1 l 

Load ROM 
Image 

Note: 5 

Set Transfer 
Address at end 
of ROM Image 
{Normally J.0151-1) 

Note: 2 

G 

No 

Set 
Transfer 
Address to 
))315!1 
Note: 2 

Yes 

Display 
Error 
Message 

Stop 

® 



Display 
"ROM Image 
is loaded" 
message 

Wait for 
<ENTER> or 
<BREAK> to 
be pressed 

Write-protect 
memory t Mode }} ) 

Set CPU speed 
to 2MHz 

H 

Hardware 66 

H 

switch boot HOM 
out of Memory 

Jump to 
Trans fer Address 

Initialize 
RS-232 Port 

Note: 6 

Wait for 
carrier Detect 

Determine 
Correct 
Baud Rate 

Transmit Baud 
Rate Detect 
Message 



Wait for 
Sync Byte 
(F'F!-1) 

Load program 
from RS-232 

·rransfer 
control 
to address 
received 

Notes: 

Display and 
transmit error 4 

(1) II the boot sector was not 256 bytes in length then ii is as
sumed to be a Model Ill package. and the ROM image will 
be needed II the sector is 256 bytes in length. then the 
sector is scanned for the sequence CDxxOOH The CD is 
the first byte of a ZSO unconditional subroutine call The 
next byte can have any value The third byte is tested 
against a zero What this check does is test for any refer• 

ences lo the first 256 bytes ol memory All Radio Shack 
Model Ill operating systems. and many other packages all 
reference !he ROM at some point during the boot sector 

Most boot sectors will display a message if the system can• 
not be loaded To save space. these routines use the 
Model Ill ROM calls to display the message Several ROM 
calls have their entry points in the first 256 bytes of mem• 

ory. and these references are detected by the boot ROM 

Packages that do not reference the Model Ill ROM in the 
boo! sector can still cause the Model Ill ROM image to be 
loaded by coding a CDxxOO somewhere in the boot sector 
It does not have to be executable At the same lime, Model 
4 packages must take care that there is no sequence of 
bytes in the boot sector that could be mis-interpreted to be 
a reference to the Boot ROM An example of this would be 
sequence 06CDOEOO. which is a LO B.OCDH and a LO 
C,O If the boot sector cannot be cl1anged, then the user 

must press the <F3 .. · key each lime the system is started 
lo inform the ROM that the disk contains a Model Ill pack
age which needs the Model Ill ROM image 

(2) II you are loading a Model 4 operating system then the 
boo! ROM will always transfer control to the first byte of the 
boot sector, which is at 4300H II you are loading a Model 
Ill operating system or about to use Model Ill ROM BASIC 
then the transfer address is 3015H This is the address of 

a jump vector in the C" ROM of the Model Ill ROM image 
and this will cause the system to behave exaclly like a 
Model Ill II the ROM image file that is loaded has a differ
ent transfer address, then that address will be used when 
loading is complete If the image is already present, the 
Boot ROM will use 3015H 

(3) Two different tests are done to insure that the Model Ill 
ROM image is present The first test is to check every third 

location starting at 3000H !or a C3H This is done for 10 lo· 
cations II any of these locations does not contain a C3H, 
then the ROM image is considered to be not present' 
The next test is to check two bytes at location OOOBH II 
these addresses contain E9E1H, then the ROM image is 
considered to be present'' 

(4) See Disk Director Searcher for more information 

(5) See File Loader for more information 

(6) The RS-232 loader is described under RS-232 Boot 

Disk Directory Searcher 

When the Model Ill ROM image is to be loaded, it is always read 
from the floppy in drive 0 

Before the operation begins, some checks are made First. the 
boot sector is read in from the floppy and the first byte is 
checked to make sure ii is either a OOH or a FEH If the byte 
contains some other value, no attempt will be made to read the 

ROM image from that disk The location of the directory cylinder 
is then taken from the boot sector and the type of disk is deter
mined This is done by examining the Data Address Mark that 

Hardware 67 



was picked up by the Floppy Disk Controller (FDC) during the 
read of the sector If the DAM equals 1, the disk is a TRSDOS 
1 x ~lyle di::ik If U1t: 0Aiv1 equals 0, then tha disk is a LOOS 5 1/ 
TRSDOS 6 style disk This is important since TRSDOS 1 x 
disks number sectors starting with 1 and LOOS style disks 
number sectors starting with 0 

Once the disk type has been determined, an extra test is made 
if the disk is a LOOS style disk This test reads the Granule Al
location Table (GAT) to determine if the disl< is single sided or 
double sided 

The directory is then read one record at a time and a compare 
is made against !he pattern 'MODEL% for the filename and 
Ill' for the extension The %' means that any character will 
match this position If the user pressed one al the selection 
keys (A-G) during the keyboard scan, then !hat character is 
substituted in place of the '%' character For example, if you 
pressed 'D', then the search would be for the lile 'MODELO 
with the extension Ill The searching algorithm searches until 
ii finds the entry or ii reaches the end of the directory 

Once the entry has been found, the extent information for lt1at 
file is copied into a control block for later use 

Fite Loader 

The file loader is actually two modules - the actual loader and 
a set of routines to fetch bytes from the file on disk The loader 
is invoked via a AST 28H The byte fetcher is called by the 
loader using RST 20H Since restart vectors can be re-directed, 
the same loader is used by the RS-232 boot The difference is 
that the RST 20H is redirected to point to tt1e RS-232 data re
ceiving routine The loader reads standard loader records and 
acts upon two types: 

01 Data Load 
1 byte with length ol block, including address 
1 word with address to load the data 
n bytes ol data, where n + 2 equals the length specified 

02 Transfer Address 
1 byte witt1 the value of 02 
1 word wilh the address to start execution at 

Any other loader code is treated as a comment block and is ig
nored, Once an 02 record t,as been found, the loader stops 
reading, even if there is additional data, so be sure to place the 
02 record at the end of the file 

Floppy and Hard Disk Driver 

The disk drivers are ente;ed via RST SH nnd '-Nill rco.d u :::;cctor 
anywhere on a floppy disk and anywhere on head 1 (top-head) 
in a hard disk drive Either 256 or 512 byte sectors are readable 
by these routines and they make the determination of tt1e sectm 
size The hard disk driver is compatible with both the WD1000 
and the WD1010 controllers The floppy disk driver is written for 
the WD1793 controller 

Serial Loader 

Invoking the serial loader is similar to forcing a boot from hard 

disk or floppy In this case the right shift key must be pressed at 
some time during the first three seconds after reset The pro
gram does not care if the key is pressed forever. making it con
venient to connect pins 8 and 1 O of the keyboard connector with 
a shorting plug for bench testing of boards This assumes that 
the object program being loaded does not care about the key 
closure 

Upon entry, the program first asserts OTA (J4 pin 20) and RTS 
(J4 pin 4) true Next, "Not Ready is printed on the topmost line 
of the video display Modem status line CD (J4 pin 8) is then 
sampled The program loops until it finds CD asserted true At 
that time the message "Ready is displayed Then the program 
sets about determining the baud rate from the host computer 

To determine the baud rate. the program compares data re
ceived by the UART to a test byte equal to '55 hex The receiver 
is first set to 19200 baud II ten bytes are received which are not 
equal to the test byte, the baud rate is reduced This sequence 
is repeated until a valid test byte is received If ten failures occur 
at 50 baud, the entire process begins again at 19200 baud II a 
valid test byte is received, the program waits for ten more to ar
rive before concluding that it has determined the correct baud 
rate If at this time an improper byte is received or a receiver er
ror (overrun, framing, or parity) is intercepted, the task begins 
again at 19200 baud 

In order to get to this point, the host or the modem must assert 
CD true The host must transmit a sequence of test bytes equal 
to 55 hex with 8 data bits, odd parity, and 1 or 2 stop bits The 
test bytes should be separated by approximately O 1 second to 
avoid overrun errors 

When the program has determined the baud rate, the message: 

"Found Baud Rate x' 

is displayed on the screen, where .. x• is a letter from A to P 
meaning: 

A 50 baud E 150 I= 1800 M 4800 
B = 75 F 300 J 2000 N 7200 
C 110 G=600 K 2400 0 9600 
D 134 5 H = 1200 L 3600 P 19200 

Hardware 68 



The same message less the character signifying the baud rate 
is transmitted to the host. with the same baud rate and protocol 
This message is the signal to the host to stop transmitting test 
bytes 

After the program has transmitted the baud rate message. 
reads from the UART data register in order to clear any overrun 
error that may have occurred due to the test bytes coming in 
during the transmission of the message This is because the re
ceiver must be made ready to receive a sync byte signalling the 
beginning of the command file For this reason, it is important 
that the host wail until the entire baud rate message ( 16 char
acters) is received before transmitting the sync byte. which is 
equal to 'FF' hex 

When the loader receives the sync byte. the message: 

Loading" 

is displayed on the screen Again. the same message is trans
mitted lo the host, and, again. the host must wait for the entire 
transmission before starting into the command file 

If the receiver should intercept a receive error while wailing for 
the sync byte, the entire operation up to this point is aborted 
The video display is cleared and the message: 

Error, x·' 

is displayed near the bottom of the screen, where x" is a letter 
from B to H, meaning: 

B = parity error 
C = framing error 
D - parity & framing errors 
E overrun error 
F parity & overrun errors 
G = framing & overrun errors 
H = parity & framing & overrun errors 

The message: 

Error" 

is then transmitted to the host The entire process is then re
peated from the "Not Ready" message A six second delay is 
inserted before reinitialization This is longer than the time re
quired to transmit five bytes at 50 baud. so there is no need to 
be extra careful here 

If the sync byte is received without error, then the Loading" 
message is transmitted and the program is ready to receive the 
command file After receiving the 'Loading•· message the host 
can transmit the file without nulls or delays between bytes 

(Since the file represents Z80 machine code and all 256 
combinations are meaningful, ii would be disastrous to 
transmit nulls or other ASCII control codes as fillers. ac
knowledgement. or start-stop bytes The only control 
codes needed are the standard command file control 
bytes) 

Data can be transmitted to the loader at 19200 baud with no de· 
lays inserted Two stop bits are recommended at high baud 

rates 

See the Fl!e Loader description for more information on file 
loading 

If a receive error should occur during file loading, the abort pro
cedure described above will take place. so when attempting re· 
mote control, H is wise to monitor the host receiver during 

transmission of the file When the host is near the object board 
as is the case in the factory application. or when more than one 
board is being loaded, it may be advantageous or even nec
essary to ignore the transmitted responses of the object 
board(s) and to manually pace the test byte. sync byte. and 
command file phases of the transmission process. using the 
video display for handshaking 

System Programmers Information 

The Model 4P Boot ROM uses two areas of RAM while it is run
ning These are 4000H to 40FFH and 4300H to 43FFH (For 
512 byte boot sectors, the second area is 4300H to 44FFH ) If 
the Model Ill ROM Image is loaded. additional areas are used 
See the technical reference manual for the system you are us
ing for a list of these areas 

Operating systems that want to support a software restart by re
executing the contents of the boot ROM can accomplish this in 
one of two ways If the operating system relies on the Model Ill 
ROM Image, then jump to location O as you have in the past If 
the operating system is a Model 4 mode package. a simple way 
is to code the following instructions in your assembly and load 
them before you want to reset: 

Absolute Location 
0000 
0001 
0003 

Instruction 
DI 
LO 
OUT 

A_1 
(9CH).A 

These instructions cause the boot ROM to become address· 
able After executing the OUT instruction, the next instruction 
executed will be one in the boot ROM (These instructions also 
exist in the Model Ill ROM image at location O ) The boot ROM 
has been written so that the first instruction is at address 0005 
The hardware must be in memory mode O or 1, or else the 
boot ROM will not be switched in This operation can be 
done with an OUT instruction and then a RST O can be exe· 
cuted to have the ROM switched in 

Hardware 69 



Restarts can be redirected at any time while the ROM is 
switct1ed in All restarts jump to fixed locations in RAM and 
these areas may be changed to point to the routine that 1s to be 
executed 

Restart RAM Location Default Use 
a none Cold Start/Boot 
8 4000H Disk l/O Request 

10 4003H Display string 
18 4006H Display block 

20 4009H Byte Fetch (Called by Loader) 
28 400CH File Loader 
30 400FH Keyboard scanner 
38 4012H Reserved for future use 
66 4015H NM! (Floppy l/O Command 

Complele) 

The above routines have fixed entry parameters Tt1ese are de~ 
scribed here 

Accepts 
A 
B 

C 

DE 

HL 

Returns 
z 

NZ 

Error Codes 
3 
4 
5 
6 

11 

12 

1 for floppy 2 for hard disk 

Command 
Initialize 
Restore 
Seek 
Read 12 (All reads have an im-

plied seek) 
Sector number to read 
The contents of the location disktype 
(405CH) are added lo this value before 

an actual read II the disk is a two sided 
floppy just add 18 to the sector number 

Cylinder number (Only E is used in 
floppy operalions) 
Address where data from a read opera~ 
lion is to be stored 

Success, Operalion Completed 

Error Error code in A 

Hard Disk drive is not ready 
Floppy disk drive is not ready 
Hard Disk drive is not available 
Floppy disk drive is not available 
Drive Not Ready and no Index (Disk in 
drive door open) 
CRC Error 
Seek Error 
Lost Data 
ID Not Found 

Display String (RST 10H) 

Accepts 

HL 

DE 

Returns 
Success Always 

A 
DE 
HL 

Pointer to text to be displayed 
Text must be terminated with a null (0) 
Offset position on screen where text is to 
be displayed 

(A O000H will be the upper left-hand cor

ner of the display I 

Altered 
Points to next position on video 
Points to the null (0) 

Display Block (AST 18H) 

Accepts 

HL 

or 

Points to control vector in tl1e format 
+ 0 Screen Offset 
+ 2 Pointer to text terminated with 
null 
+4 
null 

Pointer to text terminated with 

+ n word FFFFH End of control 

+n 
vector 

word FFFEH Next word is 

new Screen 
Offset 

II Z flag is set on entry then the first screen offset is read from 
DE instead of from the control vector 

Each siring is positioned after the previous siring unless a 
FFFEH entry is found This is used heavily in the ROM to re
duce duplication of words in error messages 

Returns 
Success Always 

DE Points to next position on video 

Byte Fetch (RST 20H) 

Accepts None 

Returns 
z 

NZ 

Errors 

10 

Success, byte in A 
Failure, error code in A 

Any errors from the disk 1/0 call and: 
ROM Image can t be loaded - Too many 

extents 
ROM Image can I be loaded - Disk drive 
is not ready 

Hardware 70 



File Loader (RST 28H) 

Accepts None 

Returns 

Errors 

z 
NZ 

Success 
Failure, error code in A 

Any errors from the disk 1/0 call or the 
byte fetch call and: 

O The ROM image was not found on drive 0 

There are several pieces of information left in memory by the 
boot ROM which are useful to system programmers These are 

shown below: 

RAM Location 
401DH 

4055H 

4056H 
4057H 

4059H 

4058H 

405CH 

Description 
ROM Image Selected (~1

0 for none 

selected or A·G) 
Boot type 
1 = Floppy 
2 = Hard disk 

3 ARCNET 
4 = RS-232C 
5 • 7 = Reserved 

Boot Sector Size (1 for 256. 2 for 512) 
RS-232 Baud Rate (only valid on RS-

232 boot) 
Function Key Selected 
O = No function key selected 
<F1 ,. or <1 86 

<F2>· or <2 · 87 
<F3 ·or· 3 88 
<Caps··· 

-"Ctrl> 
·· Left-Shift · 
<Right-Shift · 

Reserved 

85 

84 
82 

83 
80-81 and 89-90 

Break Key Indication (non.zero ii 
<Break> pressed) 

Disk type (0 for LDOS· 
TRSDOS 6.1 for 
TRSDOS 1 x) 

Keep in mind that Model Ill ROM image will initialize these 

areas. so this information is useful only to the Model 4 mode 

programmer 

3.1.7 RAM 

Two configurations of Random Access Memory (RAM) are 

available on the Model 4P: 64K and 128K The 64K and 128K 

option use the 6665-type 64K x 1 200NS Dynamic RAM. which 

requires only a single + 5v supply vollage 

The DRAMs require multiplexed incoming address lines This 
is accomplished by !Cs U 111 and U 112 which are 7 4LS 157 
multiplexers Data to and from the DRAMs are buffered by a 
74LS245 (U117) which is controlled by Page Map PAL. U110 

The proper timing signals RASO'. RAS1 • MUX'. and GAS" are 
generated by a delay line circuit U97 U115 (112 of a 74S112) 
and U116 (1/4 of a 74F08) are used thegenerale a precharge 
circuit During M1 cycles of the Z80A in 4 MHz mode. the high 
time in MREQ has a minimum time of 11 O nanosecs The spec· 

ification of 6665 DRAM requires a minimum of 120 nanosecs so 

this circuit will shorten the MREQ signal during the M1 cycle 
The resulting signal PMREO ·,s used to start a RAM memory 
cycle through U113 (a 74S64) Each different cycle is controlled 
at U113 to maintain a fast M1 cycle so no wait stales are re· 

quired The output of U113 (PRAS') is ANDedwith RFSH to not 
allow MUX' and GAS' to be generated during a REFRESH 
cycle PRAS' also generates either RASO" or RAS1'. depend· 

ing on which bank of RAM the CPU is selecting GCAS' gen· 

erated by the delay line U97 is latched by U 115 ( 1 2 of a 
74S112) and held to the end of the memory cycle The output 
of U115 is ANDed with VIDEO signal to disable the GAS' signal 

from occurring if the cycle is a video memory access Refer to 
M1 Cycle Timing (Figure 3-8. and 3-9 ), Memory Read and 
Memory Write Cycle Timing (Figure 3-10 ) and (Figure 3-

11 .) 

Hardware 71 



I a 
::; 
DJ 
ii, 

I ...., 
"' 

MODE i 
..... 

BOOT ROM 4K 

RAM 1,0K 
READ ONLY l(DESPAGE, ENPAGE, 

SRCPAGE) 
KEYBD lK 
VIDEO lK .... <1,1,,0) 

RAM 16K 

----

RAM 32K 

~: 

l(fJ,l,fl,) 

- (,0,1,1) 

SEL,0 = 
SELl = 
ROM= 

STATE 

,0 
,0 
1 

I 32K RAM 

r----

I 

LEVEL 

,0v 
,0v 
,0v 

32K RAM 

Figure 3-5. Memory 

RAM 14K 
READ ONLY 

KEYBD lK 
VIDEO lK 

RAM 16K 

MODE ,0 

{DESPAGE, ENPAGE, 
SRCPAGE} 

c 1,1,,0) 32K RAM 

11------ t=------

RAM 32K 

SEL,0 = 
SEil = 
ROI' = 

( ,0, 1, 1 l 

STATE 

,0 
,0 
,0 

LEVEL 

,0v 
,0v 
sv 

32K RAM 



::i:: 

"' a. :; 
"' m 
.... 
"' 

BOOT ROM 4K 

RAM 14K 

MODE 1 

IWRITE ONLY4Kl(DESPAGE, ENPAGE, 
• • SRCPAGE) 
I--K~E~Y-B~D~l~K--1 

I VIDEO lK , ..... (1,1,,0) 

RAM 16K ( 1,1,1) 

1----7 I,::; \ 
I 

RAM 32K I .. 
-'1111111 

SELO = 
SELl = 
ROM= 

(,0,1,ll 

STATE 

1 
fl 
fl 

32K RAM 

r---1 
I 

I 

LEVEL 

sv 
flV 
sv 

32K RAM 

I 

I 

Figure 3-6. Memory 

MODE 1 

RAM 14K 

(DESPAGE, ENPAGE, 
I ISRCPAGE) 

KEYBD lK 
VIDEO lK ..... 
RAM 16K 

r---1 
I 

I RAM 32K 

I 

1:.. 

SELfl = 
SELl = 
ROM= 

( 1, 1,,0) 

(l,1,1) 

I\ 
/C.0,1,l-rl 

(,0,1,1) 

STATE 

1 
fl 
1 

32K RAM 

r-----
I 

LEVEL 

sv 
flV 
flv 

32K RAM 



I 
!l) 

a. 
:;; 
!l) 

cil 

" .i,. 

RAM 32K 

r----, 

I 
RAM 29K 

KEYBD lK 

VIDEO 2K 

MODE 2 

(DESPAGE, ENPAGE, 
SRCPAGE) 

( 1, 1,,0) 

A 

/''" 
◄ {,0,1,1) 

32K RAM 

r----, 

. I 32K RAM I 

STATE LEVEL 

SEL,0 = 
SELl = 
ROM= 

,0 
1 
X 

,0v 
5V 

Figure 3-7. Memory 

RAM 32K 

MODE 3 

(DESPAGE, ENPAGE, 
SRCPAGE) 

(1,1,,0) 
32K RAM 

r-- -- .... -, I\ t--------

I RAM 32K 11:-

SEL,0 = 
SELl = 
ROM= 

(,0, 1, 1) 

STATE 

1 
1 
X 

I 

LEVEL 

5V 
5V 

32K RAM 



I 

"' a. :; 
"' ro 
__, 
01 

Tl 

( 2MHz) PCLK _J 

A,0-Al5 ::::::x 
Ml 

MREQ 

RD ______ _, 

Waveform 

Symbol 
lr,pul 

'.lus16e 
va·,a 

~ '""" ~ ;,omHtoi.. 

1llZlT T•~;a:;~ H 

T2 

Ovmu1 

VJ.SI Cr>M,c;e 

FromHlOl 

w,11Ct,anqe 
F,oml !OH 

W11vt1lorm 

Symbol 

~ 

X 

RFSH ___________________ __,, 

PMREQ _______ _, 

RAMRDEN ____, 

PRAS*--------, 

~ 

T3 

Ovt:,vf 

cnan;_;ng 
S1a1e 

..,,qr, 

-oeoance 

T4 

x::: 

RASEN,0* or---_ n I 
RASENl* ! . . . 

RAS.0* or ________ _, 

RASl* 
MUX* 

CAS*-----------. 

DRA.0-DRA7 X'i('i('x'ffl ROW ADD. f COL. ADD. 1WXtK6XZXW REFRESH ADD. x:: 
MD,0-MD7 ----------~ VALID DATA ►----------------------------

Figure 3-8. M1 Cycle Timing (2MHZ) 100ns/dir. 



Tl I T2 I T3 I T4 

c 4MHz) PCLK _j ' I \ I ' J 
Ml'-Al5 

Ml 

MREQ 

RD 

RFSH 

I 
!lJ PMREQ ii 
::; 
!lJ 
m RAMRDEN 

" PRAS* 0) 

RASEN,0* or 
RASENl* 

RAS,0* or 
RASl* 

MOX* 

CAS* 

DRA,0-DRA7 mxxxxxxxxt ROW ADD. x COL. ADD. )( REFRESH ADD. t 
MD,0-MD7 ( VALID DATA ) 

Figure 3-9. M1 Cycle Timing (4MHZ) 50nsidir. 



I 
"' a. 
~ 
iil 
--.J 
--.J 

Tl T2 T3 

PCLK _j \ L 
~ c=: A0'-Al5 V --

MREQ 

RD 

PMREQ 

RAMRDEN 
PRAS* 

RASEN0'* or 
RASENl* 

RAS0'* or 
RASl* 

MUX* 

CAS* 
I 

DRA0'-DRA7 88!~ ROW ADD. X COL. ADD. wMtme: 
MD0'-MD7 VALID DATA 

Figure 3-10. Memory Read Cycle Timing 



PCLK 

A/o-Al5 

MREQ 

WR 

I 

"' PMREQ a. 
:E 
"' iii RAMWREN 
--J 
CX) 

PRAS* 

RASEN/o* or 
RASENl* 

RAS/a* or 
RASl* 

MUX* 

CAS* 

DRA/o-DRA7 

MD/o-MD7 

I 
_J 

-

Tl Tz T3 

L_ I 
~ 

)c=: 

____ .J 

----------~ _____ _j 

~ ROW ADD. l COL. ADD.~ tNW9YJX 
---------m WRITE DATA ::J~-------

Figure 3-11. Memory Write Cycle Timing 



Memory Map - Model 4P 

Mode0 SEL0 - av Mode 1 SEL0 = 1 +sv 
SEL1 0 - av SEL1 0 ov 
ROM - 1 av ROM - 0 ,SV 

0000-0FFF Boot ROM 4K 0000-37FF RAM 14K 
1000-37FF RAM (Read Only) 10K 3800-3BFF Keyboard 1K 
37E8-37E9 Printer Status (Read Only) 3C00-3FFF Video 1K 
3800-3BFF Keyboard 1K 4000- FFFF RAM 48K 
3C00-3FFF Video 1K 
4000- FFFF RAM 48K 

Mode2 SEL0 a av 
SEL1 = 1 = +sv 

Mode □ SELO = a = av ROM X ~ Don·t Care 
SEL1 0 = av 
ROM - 0 +SV 0000- F3FF RAM 61K 

F400-F7FF Keyboard 1K 
0000-37FF RAM (Read Only) 14K FB00-FFFF Video 2K 
37E8-37E9 Printer Status (Read Only) 2 
3800-3BFF Keyboard 1K 
3C00-3FFF Video 1K Mode 3 SEL0 = 1 = +sv 
4000- FFFF RAM 48K SEL1 +SV 

ROM = X Oon·t Care 

Mode 1 SEL0 - 1 - +5V 0000-FFFF RAM 64K 
SEL1 = 0 0V 
ROM = 1 = 0V 

0000-0FFF Boot ROM 4K 
0000-0FFF RAM (Write Only) 4K 
1000-37FF RAM 10K 
3800-3BFF Keyboard 1K 
3C00-3FFF Video 1K 
4000-FFFF RAM 48K 

Hardware 79 



l/0 Port Assignment 

Normally 
Port# Used Out In 

FC-FF FF CASSOUT' MODIN" 
FB-FB F8 LPOUT' LPIN' 
F4-F7 F4 DRVSEL' (RESERVED) 

F0-F3 DISKOUT • DISKIN· 

F0 F0 FDC COMMAND REG FDC STATUS REG 
F1 F1 FDC TRACK REG FDC TRACK REG 
F2 F2 FDC SECTOR REG FDC SECTOR REG 
F3 F3 FDCDATA REG FDC DATA REG 
EC-EF EC MODOUT' RTCIN • 
E8-EB RS232OUT • RS232IN' 
E8 EB UART MASTER RESET MODEM STATUS 
E9 E9 BAUD RATE GEN REG (RESERVED) 

EA EA UART CONTROL ANO UART STATUS REG 
MODEM CONTROL REG 

EB EB UART TRANSMIT UART HOLDING REG 
HOLDING REG (RESET DR) 

E4-E7 E4 WR NMI MASK REG RD NMI STATUS ' 
!::0 !::? E0 \MP !l\!T M.0.<::;1-( R~n Rn l"T MAC:K RFc, 

AO-OF (RESERVED) (RESERVED) 
9C-9F 9C BOOT' (RESERVED) 
94-9B (RESERVED) (RESERVED) 
90-93 90 SEN' (RESERVED) 
BC-8F GSEL0 • GSEL0' 
BB-8B CRTCCS • (RESERVED) 
88, BA 88 CRCT ADD REG (RESERVED) 
89 88 89 CRCT DATA REG (RESERVED) 
84-87 84 OPREG' (RESERVED) 
80-83 GSEL1 • GSEL1 • 

Hardware 80 



1/0 Port Description 

Name: CASSOUT • 
Port Address: FC - FF 
Access: WRITE ONLY 
Description: Output data to cassette or for sound 

generation 

Note: The Model 4P does not support cassette storage 
this port is only used to generate sound that was to 
be output via cassette port The Model 4P sends 
data to onboard sound circuit 

DO Cassette output level (sound data output) 

D1 = Reserved 

D2 - D7 Undefined 

Name: MODIN• (CASSIN ") 
Port Address: FC - FF 
Access: READ ONLY 
Description: Configuration Status 

DO 0 

D1 = CASSMOTORON STATUS 

D2 MODSEL STATUS 

D3 = ENALTSET STATUS 

D4 = ENEXTIO STATUS 

DS (NOT USED) 

06 = FAST STATUS 

07 0 

Name: LPOUT • 

Port Address: FB - FB 
Access: WRITE ONLY 
Description: Output data to line printer 

00-07 ASCII BYTE TO BE PRINTED 

Name: LPIN • 
Port Address: FB - FB 
Access: READ ONLY 
Description: Input line printer status 

O0-D3 (RESERVED) 

D4 FAULT 

1 = TRUE 
0 FALSE 

D5 UNIT SELECT 
1 = TRUE 
0 FALSE 

D6 OUTPAPER 
1 = TRUE 
0 FALSE 

07 BUSY 
1 = TRUE 
0 FALSE 

Name: ORVSEL" 
Port Address: F4 - F7 
Access: WRITE ONLY 
Description: Output FDC Configuration 

Note: Output to this port will ALWAYS cause a 1-2 mscc 
(Microsecond) wait to the 280 

00 DRIVE SELECT 0 

D1 = DRIVE SELECT 1 

D2 (RESERVED) 

D3 = (RESERVED) 

D4 SDSEL 
0 = SIDE 0 

SIDE 1 

D5 = PRECOMPEN 
0 = No write precompensation 
1 = Write Precompensation enabled 

D6 = WSGEN 
0 = No wait stale generated 
1 = wail state generated 

Note: This wait slate is to sync 280 with FDC chip during 
FDC operation 

D7 =ODEN· 
0 Single Density enabled (FM) 
1 = Double Density enabled (MFM) 

Hardware 81 



Name: DISKOUT • 
Port Address: FO - F3 
Access: WRITE ONLY 
Description: Output to FOG Control Registers 

Port FO FOG Command Register 

Port F1 FOG Track Register 

Port F2 = FOG Sector Register 

Port F3 FOG Data Register 

(Reier to FOG Manual for Bit Assignments) 

Name: DISKIN• 

Port Address: FO - F3 
Access: READ ONLY 
Description: Input FOG Control Registers 

Port F1 = FOG Track Register 

Port F2 = FOG Seclor Register 

Port F3 = FOG Data Register 

(Refer to FOG Manual for Bit Assignment) 

Name: MODOUT • 
Port Address: EC - EF 
Access: WRITE ONLY 
Description: Output to Configuration Latch 

DO = (RESERVED) 

01 

02 

03 

= CASSMOTORON (Sound enable) 
0 = Cassette Motor Off (Sound enabled) 
1 = Cassette Motor On (Sound disabled) 

= MODSEL 
0 = 64 or 80 character mode 
1 = 32 or 40 character mode 

= ENALTSET 
0 Alternate character set disabled 
1 = Alternate character set enabled 

04 = ENEXTIO 
0 - External 10 Bus disabled 

Exler nal !O Bus E:nabled 

05 (RESERVED) 

06 FAST 
0 2 MHZ Mode 
1 = 4 MHZ Mode 

07 (RESERVED) 

Name: RTCIN • 

Port Address: EC - EF 
Access: READ ONLY 
Description: Clear Real Time Clock Interrupt 

00-07 DONTCARE 

Name: RS2320UT ' 
Port Address: EB - EB 
Access: WRITE ONLY 

Description: UART Control, Data Control Modem Conlrol 
BAG Control 

Port EB UART Master Reset 

Port E9 BAUD Rate Gen Register 

Port EA UART Control Register (Modem Conlrol Reg ) 

Port EB = UART Transmit Holding Reg 

(Reier to Model Ill or 4 Manual lor Bit Assignments) 

Name: RS232IN • 
Port Address: EB - EB 
Access: READ ONLY 
Description: Input UART and Modem Status 

Port EB MODEM STATUS 

Port E9 = (RESERVED) 

Port EA = UART Stalus Register 

Port EB UART Receive Holding Register (Resets DR) 

(Reier to Model Ill or 4 Manual for Bit Assignments) 

Hardware 82 



Name: WRNMIMASKREG • 
Port Address: E4 - E7 
Access: WRITE ONLY 
Description: Output NMI Latch 

DO - DS = (RESERVED) 

D6 ENMOTOROFFINT 

07 

O = Disables Motorofl NMI 
1 Enables Motorolf NMI 

ENINTRO 
O = Disables INTRO NMI 
1 Enables INTRO NMI 

Name: RDNMISTATUS • 

Port Address: E4 - E7 
Access: READ ONLY 
Description: Input NMI Status 

DO = 0 

D2 - D4 = (RESERVED) 

DS = RESET (not needed) 
0 Reset Asserted (Problem) 
1 = Reset Negated 

D6 MOTOROFF 

D7 

O = Motorolf Asserted 
1 = Motorolf Negated 

= INTRO 
0 = INTRO Asserted 
1 INTRO Negated 

Name: WRINTMASKREG • 
Port Address: E0- E3 
Access: WRITE ONLY 
Description: Output INT Latch 

DO - D1 = (RESERVED) 

D2 ENRTC 
0 = Real time clock interrupt disabled 
1 Real time clock interrupt enabled 

D3 = ENIOBUSINT 
O = External 10 Bus interrupt disabled 
1 External 10 Bus interrupt enabled 

D4 = ENXMITINT 
O RS232 Xmit Holding Reg empty int 
disabled 
1 = RS232 Xmit Holding Reg empty int 
enabled 

DS 

D6 

D7 

ENRECINT 
0 = RS232 Rec Data Reg full int disabled 
1 = RS232 Rec Data Reg full int enabled 

ENERRORINT 
0 = RS232 UART Error interrupts disabled 
1 = RS232 UART Error interrupts enabled 

(RESERVED) 

Name: RDINTSTATUS • 
Port Address: E0 - E3 
Acc,,ss: READ ONLY 
Description: Input INT Status 

DO- D1 = (RESERVED) 

D2 RTC INT 

D3 = IOBUSINT 

D4 RS232 XMIT INT 

DS RS232 REC INT 

D6 = RS232 UART ERROR INT 

D7 (RESERVED) 

Name: BOOT· 
Port Address: 9C - 9F 
Access: WRITE ONLY 
Description: Enable or Disable Boot ROM 

DO =ROM· 
O Boot ROM Disabled 

Boot ROM Enabled 

D1 D7 = (RESERVED) 

Name: SEN· 

Port Address: 90 - 93 
Access: WRITE ONLY 
Description: Sound output 

DO SOUND DATA 

D1 - D7 = (RESERVED) 

Hardware 83 



Name: OPREG • 
Port Address: 84 
Access: WRITE ONLY 
Description: Output to operation reg 

DO = SELO 

01 = SEL1 

SEL1 
0 
0 

SELO 
0 

1 
0 

D2 = 8064 
0 = 64 character mode 
1 80 character mode 

D3 = INVERSE 
0 = Inverse video disabled 
1 = Inverse video enabled 

MODE 
0 
1 
2 

3 

D4 = SRCPAGE - Points to the page to be mapped 
as new page 

0 = U64K, L32K Page 
1 U64K, U32K Page 

D5 = EN PAGE - Enables mapping al new page 
o = Page mapping disabled 
1 = Page mapping enabled 

D6 = DESPAGE - Points to the page where new 
page is to be mapped 

0 = L64K, U32K Page 
1 = L64K, L32K Page 

D7 = PAGE 
0 = Page O of Video Memory 
1 = Page 1 of Video Memory 

Hardware 84 



3.1.8 Video Circuit 

The heart of the video display circuit in the Model 4P is the 
68045 Cathode Ray Tube Controller (CRTC), UBS The CRTC 
is a preprogrammed video controller that provides two screen 
formats: 64 by 16 and BO by 24 The format is controlled by pin 
3 of the CRTC (8064') The CRTC generates all of the neces
sary signals required for the video display These signals are 
VSYNC (Vertical Sync), HSYNC (Horizontal Sync) for proper 
sync of the monitor. DISPEN (Display Enable) which indicates 
when video data should be output lo the monitor, the refresh 
memory addresses (MAO-MA 13) which addresses the video 
RAM, and the row addresses (RAO-RA4) which indicates which 
scan line row is being displayed The CRTC also provides hard
ware scrolling by writing to the internal Memory Start Address 
Register by OUTing to Port BBH The internal cursor control of 
the 68045 is not used in the Model 4P video circuit 

Since the 80 by 24 screen requires 1,920 screen memory lo
cations, a 2K by 8 static RAM (U82) is used for the video RAM 
Addressing to the video RAM (UB2) is provided by the 68045 
when refreshing the screen and by the CPU when updating of 
the data is performed These two sets of address lines are mul
tiplexed by three 74LS157s (U83, U84, and U104) The multi
plexers are switched by CRTCLK which allows the CRTC to 
address the video RAM during the high state of CRTCLK and 
the CPU access during the low state A 10 from the CPU is con
trolled by PAGE' which allows two display pages in the 64 by 
16 format When updates to the video RAM are performed by 
the CPU, the CPU is held in a WAIT state until the CRTC is not 
addressing the video RAM This operation allows reads and 
writes lo video RAM without causing hashing on the screen 
The circuit that performs this function is a 7 4LS244 buffer 
(U103), an 8 bit transparent latch, 74LS373 (U102) and a Delay 
line circuit shared with Dynamic RAM liming circuit consisting 
of a 74LS74 (U95), 74LS32 (U94), 74LS04 (U74), 74LS00 
(U96), 74LS02 (U75), and Delay Line (U97) During a CPU 
Read Access to the Video RAM, the address is decoded by the 
PAL U109 and asserts VIDEO' low This is inverted by U74 (1/ 
6 of 74LS04) which pulls one input of U96 (1/4 of 74LS00) and 
in turn asserts VWAIT • low to the CPU RD is high at this lime 
and is latched into U95 (1/2 of 74LS74) on the rising edge of 
XADR7' XADR7' is inverse of CRTCLK which drives the 
CRTC (68045), and the address multiplexers U83, U84, and 

U104 

When RD is latched by U95, the Q output goes low releasing 
WAIT' from the CPU The same signal also is sent lo the Delay 
Line (U97) through U116 (1 /4 of 74F08) The Delay line delays 
the falling edge 240 ns for VLATCH' which latches the read 
data from the video RAM at U102 The data is latched so the 
CRTC can refresh the next address location and prevent any 
hashing MAD' decoded by U108 and a memory read is ORed 
with VIDEO' which enables the data from U102 to the data bus 
The CPU then reads the data and completes the cycle A CPU 
write is slightly more complex in operation As in the RD cycle, 
VIDEO' is asserted low which asserts VWAIT" low to the CPU 
WR is high at this lime which is NANDed with VIDEO and 
synced with CRTCLK to create VRAMDIS that disables the 
video RAM output On the rising edge of XADR7', WR is 
latched into U95 (1/2 of 74LS74) which releases VWAIT' and 
starts cycle through the Delay Line After 30ns DLYVWR' (De
layed video write) is asserted low which also asserts VBUFEN' 
(Video Buffer Enable) low. VBUFEN' enabled data from the 
Data bus to the video RAM Approximately 120ns later 
DLYVWR" is negated high which writes the data to the video 
RAM and negates VBUFEN' turning off buffer The CPU then 
completes WR cycle to the video RAM Refer to Video RAM 
CPU Access Timing Figure 5-12 for liming of above RD or WR 
cycles 

During screen refresh, CRTCLK is high allowing the CRTC to 
address Video RAM The data out of the video RAM is latched 
by LOAD' into a 74LS273 (U101) D7 is generated by IN
VERSE' through U125 (1/6 of 74S04), and U123 (1/4 of 
74LS08) This decoding determines if character should be al
pha-numeric only (if inverse high) or unchanged (INVERSE' 
low) The outputs of U101 are used as address inputs the char
acter generator ROM (U42) A9 is decoded with ENALTSET 
(Enable Allernate Set) and 07 of U101, which resets A9 to a 
low if Q7 and ENALTSET are high See ENALTSET Control Ta
ble below 

ENALTSET 07 06 A9 
0 0 0 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 0 

Hardware 85 



::r: 
"' a. 
:E 
"' al 
a, 
0) 

2,0M 

PCLK* 

A,0-Al5 

MREQ 

RD 

WR 

CRTCLK 

XADR7* 

VIDEO* 

VIDEO 

U95.8 

VWAIT* 

VRAMDIS 

DLYVWR* 

VBUFEN* 

VLATCH* 

Ul,02.1 

_J 

\ 

RD CYCLE WR CYCLE 

Tl I T2 I Tw I T3 Tl I T2 I Tw Tw T3 I Tl 

L __ _,, 

l r 

Figure 3-12. Video RAM CPU Access Timing 

L..J 
7-.J 

1 



RA0-RA3, row addresses from the CRTC are used to control 
which scan line is being displayed The Model 4P has a 4-bit full 
adder 74LS283 (U61) to modify the Row address During a 
character display DLYGRAPHIC" is high which applies a high to 
all 4 bits to be added lo row address This will result in subtract
ing one from Row address count and allow all characters to be 
displayed one scan line lower The purpose is so inverse char
acters will appear within the inverse block When a graphic 
block is displayed DLYGRAPHIC" is low which causes the row 
address to be unmodified Moving jumper from E14-E15 to 
E15-E16 will disable this circuit 

DLYCHAR" and DLYGRAPHICS are inverse signals and con
trol which data is to be loaded into the shift register U63 
When DLYCHAR" is low and DLYGRAPHIC" is high, the 
Character Generator ROM (U42) is enabled lo output data: 
when DLYCHAR" is high and DLYGRAPHIC" is low the 
graphics characters from U41 (74LS15) is buffered by U43 
(74LS244) to the shift register. The data is loaded into the 
shitt register on the rising edge of SHIFT" when LOAOS" is 
low Blanking is accomplished by masking off LOADS" so no 
data will be loaded and zero data will be shifted out with the 
serial input of U63, pin 1, grounded Serial video data is out
put U63 pin 13 and is mixed with inverse and/or hires graph
ics information by (1/4 or 74LS86) U143 The video data is 
then mixed with a DO7 Rate clock, either DOT" and DCLK, 
to create distinct dots on the monitor. DOT" and DCLK are 
inverse signals and are provided to allow a choice to obtain 
the best video results The video information is filtered by 
F34, R45 (47 ohm resistor), and C241 (100 pf Cap) and out
put to video monitor VSYNC and HSYNC are buffered by 
(1/2 of 74LS86) lJ143 and are also output to video monitor 
Refer to Video Circuit Timing Figure 3-13, Video Blanking 
Timing Figure 3·14, and Inverse Video Timing Figure 3-15 
for timing relationships of Video Circuit 

3.1.9 Keyboard 

The keyboard interface of the Model 4P consists of open col
lector drivers which drive an 8 by 8 key matrix keyboard and an 
inverting buffer which buffers the key or keys pressed on the 
data bus The open collector drivers (U56 and U57 (7416) are 
driven by address lines A0-A7 which drive the column lines of 
the keyboard matrix The ROW lines of the keyboard are pulled 
up by a 1 5 kohm resistor pack RP2 The ROW lines are buff
ered and inverted onto the data bus by U58 (74LS240) which is 
enabled when KEYBD" is a logic low KEYBD" is a memory 
mapped decode of addresses 3800-3BFF in Model Ill Mode 
and F400-F7FF in Model 4/4P mode. Refer to the Memory Map 
under Address Decode for more information During real time 
operation, the CPU will scan the keyboard periodically to check 
if any keys are pressed If no key is pressed, the resistor pack 
RP2 keeps the inputs of U58 at a logic high U58 inverts the 
data to a logic low and buffers it to the data bus which is read 
by the CPU If a key is pressed when the CPU scans the correct 
column line, the key pressed will pull the corresponding row to 
a logic low. U58 inverts the signal to a logic high which is read 
by the CPU 

3.1.10 Real Time Clock 

The Real Time Clock circuit in the Model 4P provides a 30 Hz 
(in the 2 MHz CPU mode) or 60 Hz (in the 4 MHz CPU mode) 
interrupt to the CPU By counting the number of interrupts that 
have occurred, the CPU can keep track of the time The 60 Hz 
vertical sync signal (VSYNC) from the video circuitry is used for 
the Real Time Clock's reference In the 2 MHz mode, FAST is 
a logic low which sets the Preset input, pin 4 of U22 (74LS74), 
to a logic high This allows the 60 Hz (VSYNC) to be divided by 
2 to 30 Hz The output of 1 /2 of U22 is ORed with the original 
60 Hz and then clocks another 74LS74 (1/2 of U22) If the real 
time clock is enabled (ENRTC at a logic high), the interrupt is 
latched and pulls the INT" line low to the CPU When the CPU 
recognizes the interrupt, the pulse is counted and the latch re
set by pulling RTCIN" low In the 4 MHz mode, FAST is a logic 
high which keeps the first half of U22 in a preset state (the o• 
output al a logic low) The 60 Hz is used to clock the interrupts 

NOTE: If interrupts are disabled, the accuracy of the real 
time clock will suffer 

3.1.11 Line Printer Port 

The Line Printer Port Interface consists of a pulse generator, an 
eight-bit latch, and a status line buffer The status of the line 
printer is read by the CPU by enabling buffer U3 (74LS244) 
This buffer is enabled by LPRD" which is a memory map and 
port map decode In Model Ill mode, only the status can be read 
from memory location 37E8 or 37E9 The status can be read in 
all modes by an input from ports F8-FB For a listing of the bit 
status, refer to Port Map section 

After the printer driver software determines that the printer is 
ready for printing (by reading the correct status), the characters 
to be printed are output to Port F8-FB U2, a 74LS374 eight-bit 
latch, latches the character byte and outputs to the line printer 
One-half of U1 (74LS123), a one-shot, is then triggered which 
generates an appropriate strobe signal to the printer which sig
nifies a valid character is ready. The output of the one-shot is 
buffered by 116th of the U21 (74LS04) to prevent noise from the 
printer cable from Hase-triggering the one-shot 

Hardware 87 



I 

"' a. 
:;; 
"' 
'" a, 
a, 

CRTCLK 

082 
SRA0-SRA10 

082 
SDR~-SDR7 

LOAD* 

042 
CGA3-CGA1~ 

CHAR 

DLYCHAR* 

DLYGRAPHIC* 

U42 
CGD0-CGD7 

D.0-DR from 
LS244 (043) 

SHIFT* 

SHFT/W 
063.15 

063.13 

\_::,'" - . 

/1PC. , ____ ,-
x CPU ADD. y CRTC ADD. 1 CPU ADD. v=:·:R_T_C_A=D-D-.---y CPU ADD. c= 

VALID DATA' VALID DATA VALID DATA VALID DATA ~ I VALID DATAY)l 

--u u LI 
X 

m wxmxxxmxx&wvvxx@ MxxxMNV2xxxvxxxxxxm txxxxxxxxvvvm~ 

WMvwvxxtx'U VALID DATA mxt@ «xxxxxxmxxxxoc= 
VALID DATA 

l 
7-J LJ ______ ___,,__ ___ )(' 

Figure 3·13. Video Circuit Timing 



I 
"' a. 
"' "' al 
0) 
(0 

CRTCLK 

U82 
SRA~-SRAl~ 

U82 
SRD.0-SRD7 

LOAD* 

U 42 
CGA3-CGA1~ 

U42 
CGD~-CGD7 

SHIFT* 

LOADS* 

DIS PEN 

DLYDISPEN 

DLYBLANK 

SHPT/LO 
063.15 

U143.8 

~~ L 
X CPU ADD. fcRTC ADD-Cr JCRTC ADD.I CPU ADD.,CRTC ADD.I CPU ADD. JcRTC ADD.I CPU ADD. lCRTC ADD.L 

-----c:::J--CJ
~ ff 

-
A ::X 1::% 1 1 X 
''/NRtlSW 

~f u u u u-
_____ r 

u u--

Figure 3-14. Video Blanking Timing 



I 
lJ) 

ii 
~ 
al 
CD 
0 

CRTCLK~ I r 
ADD.1CRTC ADD.]( CPU ADD. )cRTC ADD.) CRTC ADD.a CPU 

SRD.0-SRD7 

LOI\O* -u u u u 
042 

CGA3-CGA1~ 

SHIFT* 

SHFT/W 
063.15 

::J<~---- X X I X __ c-

u u u u u--
INVERSE 

081.12 

081.l~ 

081.15 

0143.l~ 

0143. 9 

0143.8 

DOT* or 
DCLK 

VOUT 

.ll w;&vWY:?m'il wxxmxwn, MXX88XX&W ~'---------

L_ 

Figure 3-15. Inverse Video Timing 



3.1.12 Graphics Port 

The Graphics Port (J7) on the Model 4P is provided to attach 
the optional Graphics Board The port provides 00-07 (Data 
Lines), AO-A3 (Address Lines), IN-_ GEN' and RESET' for the 
necessary interface signals for the Graphics Board GEN" is 
generated by negative ORing Port selects GSELO" (8C-8FH) 
and GSELi" (80-83H) together by (114 of 74LS08) U23 The re
sulting signal is negative ANDed with IORQ' by (114 of 74S32) 
U62 Seven timing signals are provided to allow synchroniza

tion of Main Logic Board Video and Graphics Board Video 
These timing signals are VSYNC, HSYNC, DISPEN, DCLK, H, 
I, and J Three control signals from the Graphics Board are 
used to sync to CPU access and select different video modes 
WAIT' controls the CPU access by causing the CPU to WAIT !ill 
video is in retrace area before a11ow1ng any writes or reads to 
Graphics Board RAM ENGRAF is asserted when Graphics 
video is displayed ENG RAF also disables inverse video mode 
on Main Logic Board Video CL 166' (Clear 74L 166) is used to 
enable or disable mixing of Main Logic Board Video and Graph
ics Board Video If CL166' is negated high, then mixing is al
lowed in all for video modes 80 x 24, 40 x 24, 64 x 16, and 32 x 
16 If CL 166' is asserted low, this will clear the video shirt reg
ister U63, which allows no video from the Main Logic Board In 
this state 8064' is automatically asserted low to put screen in 
80 x 24 video mode Refer to Figure 3-16 Graphic Board 
Video Timing for timing relationships Refer to the Model 4/ 
4P Graphics Board Service information for service or techni

cal information on the Graphics Board 

3.1.13 Sound 

The sound circuit in the Model 4P is compatible with the Sound 
Board which was optional in the Model 4 Sound is generated 
by alternately setting and clearing data bit DO during an OUT to 
port 90H The state of DO is latched by U130 (112 of a 74LS74) 
and the output is amplified by 02 which drives a piezoelectric 
sound transducer The speed or the software loop determines 
the frequency, and thus, the pitch or the resulting tone Since 
the Model 4P does not have a cassette circuit, some existing 
software that used the cassette output for sound would have 
been lost The Model 4P routes the cassette latch to the sound 
board through U142 When the CASSMOTORON signal is a 
logic low, the cassette motor is off, then the cassette output is 
sent to the sound circuit 

3.1.14 1/0 Bus Port 

The Model 4P Bus is designed to allow easy and convenient in
terfacing of 110 devices to the Model 4P The 110 Bus supports 
all the signals necessary to implement a device compatible with 
the Z80s 110 structure 

Addresses: 

AO to A7 allow selection or up to 256' input and 256 output 
devices if external 110 is enabled 

"Ports 80H to OFFH are reserved for System use 

Data: 

DBO to DB? allow transfer of 8-bit data onto the processor 
dala bus is external 1/0 is enabled 

Control Lines: 

M1 • - Z80A signal specifying an M1 or Operation Code 
Fetch Cycle or with IOREQ', it specifies an Interrupt 
acknowledge 

IN' - Z80A signal specifying than an input is in progress 
Logic AND of IOREQ' and WR' 

OUT' - Z80A signal specifying that an output is in prog
ress Logic AND of IOREQ' and WR' 

IOREQ' - Z80A signal specifying that an input or output 
is in progress or with M 1 ·, it specifies an interrupt 
acknowledge 

RESET' - system reset signal 

IOBUSINT' - input to the CPU signaling an interrupt from 
an 110 Bus device if 1/0 Bus interrupts are enabled 

IOBLJSWAIT' - input to the CPU wait line allowing 110 Bus 
device to force wait states on the Z80 if external 110 is 
enabled 

EXTIOSEL • - input to 110 Bus Port circuit which switches 
the 110 Bus data bus transceiver and allows and INPUT in
struction to read 110 Bus data 

The address line, data line, and all control lines except RESET' 
are enabled only when the ENEXIO bit in port EC is set to one 

To enable 110 interrupts, the ENIOBUSINT bit in the PORT EO 

(output port) must be a one However, even if it is disabled from 
generating interrupts, the status or the IOBUSINT' line can still 
read on the appropriate bit of CPU IOPORT EO (input port) 

See Model 4P Port Bit assignments for port OFF, OEC, and OEO 

Hardware 91 



::r: 
Ill a. 
:E 
Ill 
cii 
(!) 

"' 

GRAFVID-, 

ENGRAF 

0143.1.0 

0143.9 

CL166* 

DOT* or 
DCLK 

I 

X X 

X ~ ~ 

~ i X 

X X 

X X ~ x y C 

I y er 
X ~ 0 :t )C 

__J 

) 

vooTJ o o m o o o o r1 o o 

Figure 3-16. Graphic Board Video Timing 



The Model 4P CPU board is fully protected lrom foreign I Ode
vices· in that all the l/O Bus signals are buffered and can be dis
abled under software control To attach and use and !10 device 
on the liO Bus. certain requirements (both hardware and soft
ware) must be met 

For input port device use, you must enable external 1/0 de
vices by writing to port 0ECH with bit 4 on in the user soft
ware This will enable the data bus address lines and control 
signals to the 1/0 Bus edge connector When the input de· 
vice is selected, the hardware should acknowledge by as
serting EXTIOSEL" low This switches the data bus 
transceiver and allows the CPU to read the contents of the Ii 
0 Bus data lines See Figure 3-17 for the timing EXTIO
SEL" can be generated by NANDing IN and the 1/0 port 
address 

Output port device use is the same as the input port device in 
use, in that the external l/0 devices must be enabled by writing 
lo port 0ECH with bit 4 on in the user software in the same 
fashion 

For either input or output devices. the IOBUSWAIT' control line 
can be used in the normal way for synchronizing slow devices 
to the CPU Note that since dynamic memories are used in the 
Model 4P. the wail line should be used with caution Holding the 
CPU in a wait state for 2 msec or more may cause loss of mem• 
ory contents since refresh is inhibited during this time It is rec· 
ommended that the IOBUSWAIT" line be held active no more 
than 500 µsec with a 25% duty cycle 

The Model 4P will support ZB0 Mode 1 interrupts A RAM jump 
table is supported by the LEVEL II BASIC ROMs image and the 
user must supply !he address of his inlerrupt service routine by 
writing this address lo locations 403E and 403F When an in
terrupt occurs. the program will be vectored to the user-sup• 

plied address if liO Bus interrupts have been enabled To 
enable l/O Bus interrupts. the user must set bit 3 of Port 0E0H 

3.1.15 FDC Circuit 

The TRS-80 Model 4P Floppy Disk lnlertace provices a stan
dard 5-114" floppy disk controller The Floppy Disk Interface 
supports both single and double density encoding schemes 
Write precompensation can be software enabled or disabled 

beginning at any track. although the system software enables 
write precompensation for all tracks greater than twenty-one 

The amount of write precompensalion is 250 nsec and is not 
adjustable The data clock recovery logic incorporates a digital 
data separator which achieves state-of-the-art rehability One 

or two drives may be controlled by the interface All data trans
fers are accomplished by CPU data requests In double density 
operation. data transfers are synchronized to the CPU by fore• 
ing a wail to the CPU and clearing the wait by a data request 
from the FDC chip The end of the data transfer is indicated by 
generation of a non-maskable interrupt from the interrupt re

quest output of the FDC chip A hardware watchdog timer in
sures that any error condition will not hang the wait line to !he 
CPU tor a period long enough to destroy RAM conlents 

Hardware 93 



Input or Output Cycles 

-lruemd by 280 CPU 

Input or Output Cycles with Wait States 

Ai A7 

'----l------+-----+-_, 
tEXTIOSEL" 

~lnM:r1od by ZOO CPU 

tComctd1nt wrih !ORO' only on INPUT cycl, 

Figure 3-17. 1/0 Bus Timing Diagram 

Hardware 94 

I READ 

~ CYCLE 

WRITE 
CYCLE 

REAO 
CYCLE 

~--+---l ~~::: 



Control and Data Buffering 

The Floppy Disk Controller Board is an 1,0 port-mapped device 
which utilizes ports E4H. F0H. F1 H. F2H. F3H. and F4H The 

decoding logic is implemented on the CPU board (Refer to Par· 
agraph 5 1 5 Address Decoding for more information on Port 
Map) U31 is a bi-directional B·bit transceiver used to buffer 
data to and from the FDC and RS-232 circuits The direction of 
data transfer is controlled by the combination of control signals 

DISKIN" and RS232IN" II either signal is active (logic low). U31 
is enabled to drive data onto the CPU data bus II both signals 
are inactive (logic high), U31 is enabled to receive data from the 
CPU board data bus A second buffer (LI 12) is used to bull er the 

FDCchip data to the FDC•RS232 Data Bus. (BDO-BD7). U12 is 
enabled all the time and its direction controlled by DISKIN" 
Again, if DISKIN" is active (logic low). data is enabled to drive 
from the FDC chip to the Main Data Busses II DISKIN" is in· 

active (logic high). data is enabled to be transferred to the FDC 

chip 

Nonmaskable Interrupt Logic 

Dual D flip-flop U100 (7 4LS7 4) is used to latch data bits D6 and 

D7 on the rising edge of the control signal WRNMIMASKREG" 
The outputs of U100 enable the conditions which will generate 
a non-maskable interrupt to the CPU The NMI interrupt con· 

ditions which are programmed by doing an OUT instruction to 

port E4H with the appropriate bits set If data bit 7 is set. an FDC 
interrupt is enabled to generate an NMI interrupt II data bit 7 is 

reset, interrupt requests request from the FDC are disabled II 
data bit 6 is set, a Motor Time Out is enabled to generate an 
NMI interrupt II data bit 6 is reset. interrupts on Motor Time Out 
are disabled An IN instruction from port E4H enables the CPU 
to determ·1ne the source of the non-maskable interrupt Data bit 

7 indicates the status of FDC interrupt request (INTRO) 
(0 = true, 1 = false) Data bit 6 indicates the status of Motor 

Time Out (0 = true. 1 ~ false) Data bit 5 indicates the status of 

the Reset signal (0 = true. 1 false) The control signal 
RDNMISTATUS· gates this status onto the CPU data bus when 
active (logic low) 

Drive Select Latch and Motor ON Logic 

Selecting a drive prior to disk 110 operation is accomplished by 
doing an OUT instruction lo port F4H with the proper bit set The 

following table describes the bit allocation of the Drive Select 
Latch· 

Data Bit Function 
DO Selects Drive O when ser 
D1 Selects Drive 1 when set" 

D2 Selects Drive 2 when set' 
D3 Selects Drive 3 when set· 
D4 Selects Side O when reset 

Selects Side 1 when set 
D5 Write precompensation enabled when set. 

disabled when reset 

D6 Generates WAIT if set 

D7 Selects MFM mode ii set 
Selects FM mode if reset 

·only one of these bits should be set per output 

Hex D flip-flop U32 (74L 174) latches the drive select bits. side 
select and FM·1MFM bits on the rising edge of the control signal 
DRVSEL" A dual D flip-flop (U98) is used to latch the Wait En· 
able and Write precompensation enable bits on the rising edge 

of DRVSEL • The rising edge of DRVSEL • also triggers a one· 
shot (112 of U54, 74LS123) which produces a Motor On to the 
disk drives The duration of the Motor On signal is approxi• 

mately three seconds The spindle motors are not designed for 
continuous operation Therefore, the inactive state of the Motor 

On signal is used to clear the Drive Select Latch, which de-se
lects any drives which were previously selected The Motor On 
one-shot is retriggerable by simply executing another OUT in• 
struction to the Drive Select Latch 

Wait State Generation and WAITIMOUT Logic 

As previously mentioned, a wait state to the CPU can be initi· 
ated by an OUT to the Drive Select Latch with D6 set Pin 5 of 
U98 will go high alter this operation This signal is inverted by 
114th of U79 and is routed to the CPU where it forces the ZBOA 

into a wait state The ZBOA will remain in the wait state as long 
as WAIT" is low Once initiated. the WAIT' will remain low until 
one of five conditions is satisfied One hall of U77 (a five input 

NOR gate) is used to perform this function INTO, DAO, RE· 
SET. CLRWAIT. and WAITIMOUT are the inputs to the NOR 

gate II any one of these inputs is active (logic high). the output 

of the NOR gate (U77 pin 5) will go low This output is tied to the 
clear input of the wait latch When this signal goes low, it will 
clear the O output (U98 pin 5) and set the o· output (U98 pin 
6) This condition causes WAIT" to go high which allows the 

Z80 to exit the wait state U99 is a 12-bit binary counter which 
serves as a watchdog timer to insure that a wait condition will 
not persist long enough to destroy dynamic RAM contents The 

counter is clocked by a 1 MHz clock and is enabled to count 

when its reset pin is low (U99 pin 11) A logic high on U99 pin 
11 resets the counter outputs U99 pin 15 is a divide·by-1024 

output and is used to generate the signal WAITIMOUT This 
watchdog timer logic will limit the duration of a wait lo 
1024µsec. even ii the FDC chip should fail to generate a DAO 

or an INTRO 

II an OUT to Drive Select Latch is initiated with 06 reset (logic 

low). a WAIT is still generated The 12·bit binary counter will 
count to 2 which will output CLRWAIT and clear the WAIT state 

This allows the WAIT to occur only during the OUT instruction 
to prevent violating any Dynamic RAM parameters 

NOTE: This automatic WAIT will cause a 1·2 µsec wait each 

lime an out to Drive Select Laich is performed 

Hardware 95 



Clock Generation Logic 

A 4 MHz crystal oscillator and a 4-bit binary counter are used to 
generate the clock signals required by the FDC board The 4 
MHz oscillator is implemented with two inverters ( 1 3 ol U39) 
and a quartz crystal (Y2) The output ol the oscillator is inverted 
and bullered by 116 ot U39 to generate a TTL level square wave 
signal U37 is a 4-bit binary counter which is divided into a di
vide-by-2 and a divide-by-8 section The divide-by-2 section is 
used to generate the 2 MHz output at pin 12 The 2 MHz is 
NANDed with 4MHz by 1 ,4 at U 19 and the output 1s used to 
clock the divide-by-8 section of U37 A 1 MHz clock is gener
ated at pin 9 of U37 wt1ich is 90" phase-shifted from the 2 MHz 
clock This phase relationship is used to gate the guaranteed 
Write Data Pulse (WO) to tt1e Write precompensation circuit 
The 4 MHz is used to clock the digital data separator U 18 and 
the Write precompensation shift register U55 The 1 MHz clock 

is used to drive the clock input of the FDC chip (U13) and the 
clock input of the watchdog timer (U99) 

Disk Bus Output Drivers 

Hioh current ooen collector drivers U20 and U56 are used to 
buffer the output signals from the FDC circuit to the disk drives 

Write Precompensation and Write Data Pulse Shap
ing Logic 

The Write Precompensation logic is comprised o! U55 
(74LS195) 1 4 of U19 (74LS00) 1 4 of U74 (74LS04) and 
1 2 al U77 (74LS260) USS is a parallel in serial out shift reg
ister and is clocked by 4 MHz which generates a precompen
sation value of 250 nsec The output signals EARLY and LATE 
of the FDC chip (U13) are input to PO and P2 of the shift reg
ister A third signal is generated by 1 4 of U75 when neither 

EARLY nor LATE is active low and is input to P 1 of USS WD of 
the FDC chip is NANDed with 2 MHz to gate the guaranteed 
Write Data Pulse to USS for the parallel load signal SHFT LD 
When USS pin 9 is active low the signals preset at P 1-P3 are 
clocked in on the rising edge of the 4 MHz clock After USS pin 
9 goes high the data is shifted out at a 250 nsec rate EARLY 
will generate a 250 nsec delay NOT EARLY AND NOT LATE 
will generate a 500 nsec delay and LATE will generate a 750 
nsec delay This provides the necessary precompensation for 

the write data As mentioned previously Write Precompensa

tion is enabled through software by an OUT to the Drive Select 
Latch with bit 5 set This sets the O output of the 74LS74 (U98 
pin 9) which is ANDed with DDEN which disables the shift reg
ister USS DDEN disables Write Precompensation in the single 
density mode The resulting signal also enables U75 to allow 
the write data (WD) to bypass the Write Precompensalion cir
cuit The Write Data (WD) pulse is shaped by a one-shot (1 2 of 
U54) which stretches the data pulses to approximately 500 
nsec 

Hardware 96 



::c 
"' a. :; 
"' ro 
(0 ...., 

4MHZ 

2MHZ___J 

U21.1(CP.)~ LJ LJ LJ 

1MHZ-----~ 

WD mmoooonomoo 1111111111111111111mm 

U10.9 (SHFT/LDI --------------------,nm 

Figure 3-18. Write Precompensation Timing 



Clock and Read Data Recovery Logic 

The Clock :::i.nd ReBd Data Recovery I oair. is comprised of nne 
chip U18 (FOC9216) The FOC9216 is a Floppy Disk Data Sep
arator (FOOS) which converts a single slream of pulses from 
the disk drive into separate clock and data pulses for input to 
the FDC chip The FOOS consists of a clock divider. a long-term 
timing corrector, a shorHime timing corrector and reclocking 
circuitry The reference clock (REFCLK) is a 4 MHz and is di· 
vided by the internal clock divider COO and CD1 of the FOOS 
chip control the divisor which divides REFCLK With DC1 
grounded (logic low). COO (when a logic low) generates a di
vide-by-1 for MFM mode and when logic high generales a di
vide-by-2 for FM mode COO is controlled by the signal ODEN" 
which is Double Density enable or MFM enable The FOOS de
tects the leading edges ol RD" pulses and adjusts the phase of 
the internal clock to generate the separated clock (SEPCLK) to 
the FDC chip The separale long and st,ort term timing correc
tors assure the clock separation to be accurate The separated 
Dala (SEPO") is used as the ROD" input to the FOC chip 

Floppy Disk Controller Chip 

The 1793 is an MOS LSI device which performs the funclions 
of a floppy disk forrnatter/controller in a single chip implemen· 

talion The following port addresses are assigned to the internal 

registers ol the 1793 FDC chip: 

Port No. 
FOH 
F1H 
F2H 
F3H 

Function 
Cornrnand!Status Register 

Track Register 
Sector Register 
Data Regisler 

3.1.16 RS-232-C Circuit 

RS-232C Technical Description 

The RS-232C circuit for the Model 4P computer supports asyn
chronous serial transmissions and conforms to the EIA RS· 
232C slandards at the inpul-output interface connector (J4) 
The heart of the circuit is tt,e TR 1865 Asynchronous Receiver I 
Transmitter U30 It performs the job of converting tt,e parallel 
byte data from the CPU lo a serial data stream including start. 
stop, and parity bits For a more detailed description of how this 
LSI circuit performs these functions refer to the TR1865 data 
sheets and application notes The transmit and receive clock 
rates that the TR1865 needs are supplied by the Baud Rate 
Generator U52 (BR1941L) or (BR1943) This circuit lakes the 
5 0688 MHz supplied by lhe system timing circuit and the pro
grammed information received from the CPU over the data bus 
and divides the basic clock rate to provide two clocks The rates 
available lrom lhe BRG go from 50 Baud to 19200 Baud See 
the BRG table lor the complete list 

BAG Programming Table 

Transmit/ 
Receive Supported 

Nibble Baud 16X by 
Loaded Rate Clock SETCOM 

OH 50 0 8 kHz Yes 
1H 75 1 2 kHz Yes 
2H 110 1 76 kHz Yes 
3H 134 5 21523 kHz Yes 
4H 150 2 4 kHz Yes 
5H 300 4 8 kHz Yes 
6H 600 9 6 kHz Yes 
7H 1200 19 2 kHz Yes 
8H 1800 28 8 kHz Yes 
9H 2000 32 081 kHz Yes 

AH 2400 38 4 kHz Yes 
BH 3600 57 6 kHz Yes 
CH 4800 76 8 kHz Yes 

DH 7200 115 2 kHz Yes 
EH 9600 153 6 kHz Yes 
FH 19200 307 2 kHz Yes 

Tt1e RS-232C circuit is port mapped and the ports used are EB 
to EB Following is a description of each port on both input and 

output 

Port Input Output 
EB Modem status Master Resel, enables UART 

control register load 

EA UART status UART control register load and 
modem control 

E9 Not Used Baud rate register load enable 

bit 
EB Receiver Holding Transmitter Holding register 

register 

Interrupts are supported in the RS-232C circuit by lhe lnterrupl 
mask register (U92) and the Status register (U44) whict, allow 
the CPU lo see which kind of interrupt has occurred Interrupts 
can be generaled on receiver dala register full. transmilter reg
ister empty, and any one of the errors-parity, framing, or data 
overrun This allows a minimum of CPU overhead in transfer~ 
ring data lo or from the UART Tt1e interrupt mask register is 
port EO (wrile) and lhe interrupt status register is port ED (read) 
Refer to the 10 Port description for a full breakdown of all inter
rupts and their bit positions 

Hardware 98 



All Model I. Ill. and 4 software written for the RS-232-C interface 
is compatible with the Model 4P RS-232-C circuit, provided the 

software does not use the sense switches to configure the in
terface The programmer can get around this problem by di· 
reclly programming the BRG and UART for the desired 
configuration or by using the SETCOM command of the disk 

operating system to configure the interface The TRS-80 RS· 
232C Interface hardware manual has a good discussion of the 
RS-232C standard and specific programming examples (Cat

alog Number 26-1145) 

Pinout Listing 

The following list is a pinout description of the DB-25 connector 

(P1) 

Pin No. 
1 

2 
3 
4 

5 

19 
20 

22 

Signal 
PGND (Protective Ground) 

TD (Transmit Data) 
RD (Receive Data) 

RTS (Request to Send) 
CTS (Clear To Send) 
DSR (Data Set Ready) 

SGND (Signal Ground) 
CD (Carrier Detect) 
SRTS (Spare Request to Send) 
DTR (Data Terminal Ready) 

RI (Ring Indicate) 

Hardware 99 





SECTION IV 

4P GATE ARRAY THEORY OF OPERATION 

Hardware 101 





4.2 MODEL 4P GATE ARRAY THEORY OF 
OPERATION 

4.2.1 Introduction 

Contained in the following paragraphs is a description of the 
component parts of the Model 4P CPU Gate Array It is divided 
into the logical operational functions of the computer All com· 
ponents are located on the Main CPU board inside the case 
housing Reier to Section 3 for disassembly/assembly 
procedures 

4.2.2 Reset Circuit 

The Model 4P reset circuit provides the neccessary reset 
pulses to all circuits during power up and reset operations R25 
and C214 provide a lime constant which holds the input of U121 
low during power•up This allows power to be stable to all cir
cuits before the RESET' and RESET signals are applied When 
C214 charges to a logic high. the output of U121 triggers the 
input of a retriggerable one-shot multivibrator (U1) U1 outputs 
a pulse with an approximate width of 70 microsecs When the 
reset switch is pressed on the front panel. this discharges C214 
and holds the input of U121 low until lhe switch is released On 
release of the switch, C214 again charges up. triggering U121 
and U 1 to reset the microcomputer Another signal POWRST' 
1s generated lo clear drive select circuit immediately when 
reset switch is pressed 

4.2.3 CPU 

The central processing unit (CPU) of the Model 4P microcom· 
puter is a ZB0A microprocessor The ZB0A is capable of run· 
ning in either 2 MHz or 4 MHz mode The CPU controls all 
functions of the microcomputer through use of its address lines 
(A0·A15), data lines (D0•D7), and control lines (/Mt, /IOREQ. 
/RD. 1WR, iMREQ, and /RFSH) The address lines (A0·A 15) 
are buffered to other ICs through lwo 74LS244s (U67 and U27) 
which are enabled all the time with their enables pulled to GND 
The control lines are buffered to other ICs through a 74F04 
(U87) The data lines (D0·D7) are buffered through a bi•direc• 
tional 74LS245 (U86) which is enabled by BlJSEN' and the di• 
rection is controlled by BUSDIR' 

4.2.4 System Timing 

The main timing reference of the microcomputer, with the 
exception of the FDC circuit, is generated by a Gate Array 
U148 and a 20 2752 MHz Crystal This reference is inter· 
nally divided in the Gate Array to generate all necessary tim• 
ing for the CPU, video circuit, and RS·232·C circuit The 
CPU clock is generated lJ 148 which can be either 2 or 
4MHz depending on the logic state of FAST input (pin 6 of 
U148) ff FAST is a logic low, the U148 generates a 2 02752 
MHz clock If FAST is a logic high, U148 generates a 
4 05504 MHz signal PCLK (pin 23 of U148) is filtered 
through a ferrite bead (FB2) and 22ll Resistor (R9) and then 

fed to the CPU U45 PCLK is generated as a symmetrical 
clock and is never allowed to be short cycled (eg) Not al· 
lowed to generate a low or high pulse under 110 
nanoseconds 

4.2.4.1 Video Timing 

The video timing is also generated by U148 with the help of a 
PLL Multiplier Module (PMM) U 146 These two !Cs generate all 
the necessary timing signals for the four video modes: 64 x 16, 
32 x 16, 80 x 24, and 40 x 24 Two reference clocks are required 
for the four video modes One reference clock is 1 0 1376 MHz 
It is generated internally to U148, and is used by the 64 x 16 and 
32 x 16 modes The second reference clock is a 12 672 MHz 
(12M) clock which is generated by the PMM U146 12M clock 
is used by the 80 x 24 and 40 x 24 modes A 1 2672 MHz 
(1 2M16) signal is output from pin 3 of U148 and is generated 
from the master reference clock, the 20 2752 MHz crystal 
1 2M 16 is used for a reference clock for the PMM The PMM is 
internally set to oscillate at 12 672 MHz which is output as 12M 
U148 divides 12M by 1 0 to generate a second 1 2672 MHz 
clock (1 2M10) which is fed into pin 5 of U146 (PMM) The two 
1 2672 MHz signals are internally compared in the PMM where 
it corrects the 12 672 MHz output so it is synchronized with the 
20 2752 MHz clock 

MODSEL and 8064 • signals are used to select the desired 
video mode 8064 · controls which reference clock is used by 
lJ127 and MODSEL controls the single or double character 
width mode Refer to the following chart for selecting each 
video mode 

8064' MODSEL Video Mode 
0 0 64 X 16 

32 X 16 
0 BOX 24 

40 X 24 

'This is the state to be written to latch U85 Signal is inverted 
before being input to U148 

Hardware 103 



I 

"' a. 
~ 
al 
0 ... 

T 

A 

TIMING -- CPU C 

D -

J 

A = ADDRESS LINES 
C = CONTROL LINES 
D = DATA LINES 
T = TIMING 

A- - A - "' "' C "' C - "' " D "' D - --
~ 

...__£ ROM 

-D -

~ f::; k ri= KEYBOARD _ ~-.... 
-

i 
-

CRTC -- '-!II, AND .. , VIDEO 
VIDEO PORT 

I~ CIRCUIT 

t 1 

t~ 

VIDEO 
11111,p 

SOUND 
11!11< ~ 

RS232 

RAM PORT ~ 
,---lll, rli SER¥1 CHIP 

- ·~ If 

* 
~,;~~ROLLJR - ~ii 

CRAPHICS 
~ RAM EOARD r 4~ .. !ORT ~~ CHIP .. .... 

' --] I/O - LINE ---- INTERNAL 
DECODE - l'RINTER ~ ril9 I/O BU,3 .__ .... l'ORT Ilia PORT 

(:oF -"' "' "~"""] "' I/O BU3 , f::; - PORT 
"' 

i..- -
Figure 4-1. Model 4P Functional Block Diagrarr 



DCLK, the reference clock selected, is output from U 148 
U148 generates SHIFT", XADR7', CRTCLK, LOADS", and 
LOAD" for proper timing for the four video modes. U149 also 
generated H, I, and J which are fed to the Graphics Port J7 
for reference timings of Hires graphics video Refer to Video 
Timing, Figs 4-2 and 4-3 for liming reference 

4.2.5 Address Decode 

The Address Decode section will be divided into two subsec• 
lions: Memory Map decoding and Port Map decoding 

4.2.5.1 Memory Map Decoding 

Memory Map Decoding is accomplished by Gate Array 4 2 
(U106) Four memory map modes are available which are com• 

patible with the Model Ill and Model 4 microcomputers U106 is 
used for memory map control which also controls page map
ping of the 32K RAM pages Refer lo Memory Maps below 

4.2.5.2 Port Map Decoding 

Port Map Decoding is accomplished by Gate Array 4 2 (U 106) 
U106 decodes the low order address (AO-A?) from the CPU 
and decodes the port being selected The IN" signal allows the 
CPU lo read from a selected port and the our signal allows 
the CPU to write lo the selected port Reier to 10 Port 
Assignment 

4.2.6 ROM 

The Model 4P contains only a 4K x 8 Boot ROM (U70) This 
ROM is used only to boot up a Disk Operating System into 
the RAM memory If Model Ill operation or DOS is required, 
then the RAM from location 0000-37FFH must be loaded 
with an image of the Model Ill or 4 ROM code and then exe
cuted A file called MODEL A/Ill is supplied with the Model 
4P which contains the ROM image for proper Model Ill oper
ation. On power-up, the Boot ROM is selected and mapped 
into location 0000-0FFFH After the Boot Sector or the ROM 
Image is loaded, the Boot ROM must be mapped out by 
OUTing to port 9CH with DO set or by selecting Memory 
Map modes 2 or 3 In Mode 1 the RAM is write enabled for 
the full 14K This allows the RAM area mapped where Boot 
ROM is located to be written to while executing out of the 
Boot ROM Refer to Memory Maps 

The Model 4P Boot ROM contains all the code necessary lo 
initialize hardware, detect options selected from the keyboard. 
read a sector from a hard disk or floppy, and load a copy of the 
Model Ill ROM Image (as mentioned) into the lower 14K of 
RAM 

The firmware is divided into the following routines 

Hardware Initialization 

Keyboard Scanner 
Control 
Floppy and Hara Disk Driver 
Disk Directory Searcher 

File Loader 
Error Handler and Displayer 
RS-232 Boot 
Diagnostic Package 

Theory al Operation 

This section describes the operation of various routines in the 
ROM Normally. the ROM is not addressable by normal use 
However. there are several routines that are available through 
fixed calling locations and these may be used by opera!ing sys· 
terns that are booting 

On a power•up or RESET condition the ZBO s program counter 
is set to address O and the boot ROM is switched•in The mem• 
ory map of the system is set to Mode 0 (See Memory Map lor 
details ) This will cause the ZBO to fetch instructions from the 
boot ROM 

The Initialization section of the Boot ROM now perlorms lhese 
functions: 

Disables maskable and non·maskable interrupts 
Interrupt mode 1 is selected 

3 Programs the CRT Controller 
Initializes the boot ROM control areas in RAM 
Sets up a stack pointer 
Issues a Force Interrupt to tl1e Floppy Disk Controller 
to abort any current activity 

7 Sets the system clock to 4rnhz 
8 Sets the screen to 64 x 16 
9 Disables reverse video and the alternate character 

sets 
10 Tests for-·· key being pressed' 
11 Clears all 2K of video memory 

• This ·,s a special test If the · is being pressed then 
control is transferred to the diagnostic package in the 
ROM All other keys are scanned via the Keyboard 
Scanner 

Hardware 105 



lflM, 12M 

DCLK 

DOT* 

H 

I I 
Ill a. 
:;; 
Ill J 
ro 
0 

MAfl 0) 

SHIFT* 

LOADS* 

LOAD* 

CRTCLK 

XADR7* 

_J 

LJ 
LI 

Figure 4-3. Video Timing 

LJ 
u 

1 

_____ _j 

32 x 16 Mode 40 x 24 Ml)de 

I r 

LJ 
u 



:c 
!l) 

i 
!l) 

al 
0 

" 

1.0M, 12M 

DCLK 
DOT* 

H 

r-1 
J ___ _ 

MA.0 

SHIFT* 

LOADS*--,__. 

LOAD*-- 1 

CRTCLK ------

XADR7* ______ _. 

I r 

LJ 

Figure 4-2. Video Timing 64 x 16 Mode 80 x 24 Mode 



The Keyboard scanner is now called It scans the keyboard for 
a set period of time and returns sever al par a meters based on 
which, if any, keys were pressed 

The keyboard scanner checks for several dHferent groups of 
keys These are shown below: 

Function Group 
<F1> 
<F2> 
<F3> 
<1> 
<2> 
<3> 

<Left-Shilt> 
<Right-Shift> 

<Ctrl> 
<Caps> 

Special Keys 
<P> 
<L> 

Selection Group 
A 
B 
C 
D 
E 
F 
G 

Misc Keys 
<Enter> 
<Break> 

When any key in the Function Group is pressed, ii is recorded 
in RAM and will be used by the Control routine in directing the 
action of the boot If more than one of these keys are pressed 
during the keyboard scan, the last one detected will be the one 
that is used The Function group keys are currently defined as: 

<F1>or<1> 
<F2> or <2> 
<F3> or <3> 
<Lett-Shift> 
<Right-Shift> 
<Ctrl> 
<Caps> 

Will cause hard disk boot 
Will cause floppy disk boot 
Will force Model Ill mode 
Reserved for future use 
Boot from RS-232 port 
Reserved for future use 
Reserved for future use 

The Special keys are commands to the Control routine wt1ich 
direct handling of the Model Ill ROM-image Each key is de
tected individually 

<P> 

<N> 

When loading the Model Ill 
ROM-image, the user will be 
prompted when the disks can 
be switched or when ROM 
BASIC can be entered by 
pressing <Break> 
Instructs the Control routine to 
not load the Model Ill ROM· 
image, even if it appears thal 
the operating system being 
booted requires ii 

<L> Instructs !he Control routine to 
load the Model Ill ROM-image 
even if it is e.!ready !oaded This 
is useful if lhe ROM-image has 
been corrupted or when switch· 
ing ROM-images (Note that 
lhis will not cause the ROM· 
image to be loaded if the boot 
seclor check indicales thal the 
Model 111 ROM image is not 
needed Press <. F3 · or • F3 
and· 'L ·-. to accomplish !hat 

The Selection group keys are used in determining which l1!e will 
be read from disk when the ROM-image is loaded For delails 
of this operation see the Disk Directory Searct1er If more than 
one of the Selection group keys are pressed the last one de
tecled will be lhe one that is used 

The Miscellaneous keys are 

<Break> 

<Enter> 

Pressing this key is simply re
corded by setting locauon 
405BH non-zero It is up lo an 
operating system to use this 
flag if desired 
Terminates the Keyboard rou
line Any other keys pressed up 
to !hat time will be acted upon 
<Enter> is useful for experi
enced users who do not want to 
wait until the keyboard limer 
expires 

The Control section now takes over and follows the following 
flowchart 

Hardware 108 



Begin 

Goto I l J 

(Hard Disk Boot) 

Goto [ 2 J 

(Floppy Disk Bootl 

Goto l J J 

(Model III Boot) 

Goto ! 4 l 
(HS-232 Boot) 

keys 

Hardware 109 

<Fl> 
or < 1> 

pressed 

No 

Yes 

Attempt to 
read boot 
sector 

Yes 

Display 
!lard Disk 

Message 

Stop 

Attempt to 
read boot 
sector 



Display 
Floppy Disk 
Error 
Message 

C 

NU I 

(_sto__..p ) 

Set 'I"ransfer 
Address to 
43.0.l]H 
Note: 2 

Note: 1 

Hardware 110 

Attempt to 
locate 

~~M Image 

Floppy Disk 
Note: 4 

Write-enable 
.0-37FFH 
< Mode 1 I 

Load ROM 
Image 

Note: 5 

Set Transfe, 
Address at end 
of ROM Image 
<Normally 3.015Hl 

Note: 2 

G 

Set 
Transfer 
Address to 
]_015H 
Note: 2 

Yes 

Display 
Error 
Message 

Stop 

E 



Display 
"ROM Image 
is loaded" 
message 

Wait for 
< EN'rER> 
(BREAK> 
be 

write-protect 
memory ( Mode .0) 

Set CPU speed 
to 2MHz 

H 

Hardware 111 

H 

Switch boot ROM 
out o( Memory 

Jump to 
Transfer Address 

7f-----~ 

lni t ialrze 
RS-232 Port 

Note: 6 

Wait for 
carrier Detect 

Determine 
Car rect 
Baud Rate 

Transmit Baud 
Hate Detect 
Message 



Wa1 t for 
Sync Byte 
(FFtll 

program 
RS-232 

l ransf1:r 
control 
to address 
r1)ceived 

Notes: 

anU 
4 

( 1) If the boot sector was not 256 bytes in length then it is as
sumed to be a Model Ill package and the ROM image will 
be needed If the sector is 256 bytes in length then the 
sector is scanned for the sequence CDxx00H The CD is 
the first byte of a 280 unconditional subroutine call Tt1e 
next byte can have any value The tt1ird byte is tested 
against a zero What this check does is test for any refer• 
ences to the first 256 bytes of memory All Radio Shack 
Model Ill operating systems and many other packages all 
reference the ROM at some point during the boot sector 
Most boot sectors will display a message ii the system can
not be loaded To save space these routines use the 
Model Ill ROM calls to display the message Several ROM 
calls have tt1eir entry points in the first 256 bytes of mem
ory, and these references are detected by the boot ROM 

Packages that do not reference the Model Ill ROM in the 
boot sector can still cause the Model Ill ROM image to be 
loaded by coding a CDxxOO ::.u111ewl1t::re in ihe boot sector 
It does not have to be executable At the same time Model 
4 packages must take care that there is no sequence of 
bytes in the boot sector that could be mis-interpreted to be 
a reference to the Boot ROM An example of this would be 
sequence 06CD0E00 which is a LO B.0CDH and a LO 
C O If the boot sector cannot be changed then the user 
must pre~s tile , -F3 key each time the system is started 
to inform the ROM that the disk contains a Model Ill pack
age which needs the Model Ill ROM image 

(2) If you are loading a Model 4 operating system then the 
boot ROM will always transfer control lo the first byte of the 
boot sector which is al 4300H If you are loading a Model 
Ill operating system or about to use Model Ill ROM BASIC 
then the transfer address is 3015H This is the address of 
a jump vector in the C ROM of the Model Ill ROM image 
and this will cause the system to behave exactly like a 
Model Ill If the ROM image file that is loaded has a differ
ent transfer address then t11at address will be used when 
loading is complete If tt,e image is already present, the 
Boot ROM will use 3015H 

(3) Two different tests are done lo insure that the Model Ill 
ROM image is present The first test is to check every third 
location starting at 3000H for a C3H This is done for 1 0 lo
cations If any of these locations does not contain a C3H 
then the ROM image is considered to be not present 
The next test is to check two bytes at location 000BH If 
t11ese addresses contain E9E1 H then the ROM image is 
considered to be present 

(4) See Disk Director Searcher for more information 

(5) See File Loader for more information 

(6) The RS-232 loader is described under RS-232 Boot 

Disk Directory Searcher 

When the Model Ill ROM image is to be loaded it is always read 

from the floppy in drive 0 

Before the operation begins some checks are made First the 
boot sector is read in from the floppy and the first byte is 
checked to make sure ii is either a OOH or a FEH If the byte 
contains some other value no attempt will be made to read the 
ROM image from that disk The location of the directory cylinder 
is then taken from the boot sector and the type of disk is deter
mined Ttiis is done by examining the Data Address Mark that 

Hardware 112 



was picked up by the Floppy Disk Controller (FDC) during the 
read of the sector If the DAM equals 1, the disk is a TRSDOS 
1 x style disk If the DAM equals 0. then lhe disk is a LOOS 5 1 · 
TRSDOS 6 style disk This is important since TRSDOS 1 x 
disks number seclors starting with 1 and LOOS style disks 
number sectors starting with O 

Once the disk type has been determined. an extra test is made 
if the disk is a LOOS style disk This lesl reads the Granule Al
location Table (GAT) to delermine if lhe disk is single sided or 

double sided 

The directory is then read one record at a time and a compare 
is made against the pattern MODEL% for the filename and 
Ill' for the extension The %' means that any character w'i!l 

match this position If the user pressed one of the selection 

keys (A-G) during the keyboard scan. lhen thal characler is 
substituted in place of the % character For example. if you 
pressed 'D', lhen the search would be for lhe file MODELO 
with the extension ·11r The searching algorithm searches until 
it finds the entry or it reaches the end of the directory 

Once the entry has been found. the extent information for that 
file is copied into a control block for later use 

File Loader 

The file loader is aclually Iwo modules -lhe aclual loader and 
a set of roulines to fetch byles from lhe file on disk The loader 
is invoked via a AST 28H The byte fetcher is called by the 
loader using RST 20H Since restart vectors can be re-directed 
the same loader is used by lhe RS-232 boot The difference is 
that the AST 20H is redirecled to poinl to the RS-232 data re
ceiving routine The loader reads standard loader records and 
acls upon two types: 

01 Dala Load 
1 byle wilh lenglh of block, including address 
1 word with address lo load the data 
n bytes of dala, where n + 2 equals the lenglh specified 

02 Transfer Address 
1 byte with the value of 02 
1 word with the address to start execution at 

Any other loader code is treated as a comment block and is ig
nored Once an 02 record has been found. the loader stops 
reading, even if there is additional data. so be sure to place the 
02 record at the end of the file 

Floppy and Hard Disk Driver 

The disk drivers are en!ered via RST SH and will read a sector 
anywhere on a floppy disk and anywhere on head 1 (top-head) 
in a hard disk drive Either 256 or 512 byte sectors are readable 
by these routines and they make the determination of the seclor 
size The hard disk driver is compatible with both the WD1000 
and the WD1010 controllers The floppy disk driver is written for 
lhe WD1793 controller 

Serial Loader 

Invoking the serial loader is similar to forcing a boot from hard 
disk or floppy In lhis case lhe right shift key must be pressed at 
some time during the first three seconds after reset The pro
gram does not care if the key is pressed forever, making ii con
venient to connect pins 8 and 10 of the keyboard connector with 
a shorting plug for bench testing of boards This assumes lhal 
the object program being loaded does not care aboul lhe key 
closure 

Upon enlry. the program first asserts DTR (J4 pin 20) and ATS 
(J4 pin 4) I rue Next, Nol Ready" is printed on the lopmost line 
of the video display Modem slatus line CD (J4 pin 8) is !hen 
sampled The program loops until ii finds CD asserted true Al 
Iha! time the message Ready" is displayed Then lhe program 

sets aboul determining the baud rate from lhe host computer 

To determine the baud rate. the program compares data re
ceived by the UART to a lest byte equal to ·55· hex The receiver 
is first set to 19200 baud If ten bytes are received which are not 
equal lo the lest byte. the baud rate is reduced This sequence 
is repeated until a valid test byte is received If ten failures occur 
at 50 baud, the enlire process begins again at 19200 baud If a 
valid test byte is received. the program wails for ten more to ar
rive before concluding that it has determined the correct baud 
rate If at this time an improper byte is received or a receiver er
ror (overrun, framing, or parity) is intercepted. the task begins 
again al 19200 baud 

In order lo get to this point, lhe host or the modem must assert 
CD true The host must transmit a sequence of tesl bytes equal 
lo 55· hex with 8 data bits, odd parity, and 1 or 2 stop bits The 
test bytes should be separated by approximalely O 1 second to 
avoid overrun errors 

When the program has delermined the baud rate. the message: 

Found Baud Rate x 

is displayed on the screen, where ··x" is a letter from A to P. 
meaning: 

A= 50baud E = 150 
B = 75 F = 300 
C 110 G 600 
D 1345 H 1200 

I= 1800 
J 2000 
K = 2400 
L = 3600 

M = 4800 
N = 7200 
0 = 9600 
P 19200 

Hardware 113 



The same message less the ct1aracter signifying the baud rate 
is tr ansrnitted to the host. with the same baud rate and protocol 
This message is th€ signBI In thP. host to stop transmitting test 
bytes 

After the program has transmitted the baud rate message 
reads from the UART data register in order to clear any overrun 
error that may have occurred due to the test bytes coming in 
during the transmission of the message This is because the re
ceiver must he m.:1rle ready to receive a sync byte signalling the 
beginning of the command file For this reason it is important 
that the host wait until the entire baud rate message ( 16 char
acters) is received before transmitting the sync byte, which is 
equal lo FF hex 

When the loader receives the sync byte. the message: 

Loading 

is displayed on the screen Again the same message is trans
mitted to the host. and again the host must wait for the entire 
transmission before starting into the command file 

If the receiver should intercept a receive error while waiting for 
the sync byte. the entire operation up to this point is aborted 
The video display ts cleared and the message: 

Error x 

is displayed near the bottom of the screen, where x is a letter 
from B to H, meaning: 

B parity error 
C framing error 
D parity & framing errors 
E = overrun error 
F parity & overrun errors 
G = framing & overrun errors 
H parity & framing & overrun errors 

The message: 

Error 

is then transmitted to the host The entire process is then re
pealed from the ·Not Ready message A six second delay is 
inserted before reinitialization This is longer than the time re
quired to transmit live bytes at 50 baud, so there is no need to 
be extra careful here 

If the sync byte is received witt1out error, then the Loading 
message is transmitted and the program ls ready to receive the 
command lile After receiving the ·Loading message the host 
can transmit the file without nulls or delays between bytes 

(Since lhe lile represents ZB0 machine code and all 256 
combinations are meaningful. it would be disastrous to 
trar1smit nulls or other ASCII control codes as fillers, ac· 
knowledgement or start-stop bytes The only control 
codes needed are the standard command file control 
bytes) 

Data can be transmitted to the loader at 19200 baud with no de
lays inserted Two stop bits are recommended at high baud 
rates 

See the File Loader descrip!ion for more information on file 
loading 

If a receive error should occur during file loading the abort pro· 
cedure described above will take place. so when attempting re· 
mote control. it is wise to monitor the host receiver during 
transmission of the file When the host is near the object board, 
as is the case in the factory application. or when more than one 
board is being loaded. it may be advantageous or even nec· 
essary to ignore the transmitted responses of the object 
board(s) and lo manually pace the lest byte sync byte and 
l.,Ull!illc:u1u 1i1<..- t--'IIU..Jv-.;, v, ,~;._, .,._.,,._,,,,:..,..,:..,,, t''"---- '..!~ing !!'it.:" 

video display for handshaking 

System Programmers Information 

The Model 4P Boot ROM uses lwo areas of RAM while ii is run
ning These are 4000H lo 40FFH and 4300H lo 43FFH (For 
512 byte boot sectors. the second area is 4300H to 44FFH ) If 
the Model Ill ROM Image is loaded additional areas are used 
See the technical reference manual for the system you are us· 
ing for a list of these areas 

Operating systems that want to support a software restart by re· 
executing the contents ol the boot ROM can accomplish this in 
one of two ways If the operating system relies on lhe Model Ill 
ROM Image then jump to location Oas you have in the past If 
the operating system is a Model 4 mode package a simple way 
is to code lhe following instructions in your assembly and load 
them before you want to reset: 

Absolute Location 
0000 
0001 
0003 

Instruction 
DI 
LD 
OUT 

A,1 
(9CH)A 

These instructions cause the boot ROM to become address· 
able After executing the OUT instruction the next instruction 
executed will be one in the boot ROM (These instructions also 
exist in the Model Ill ROM image al location O) The boot ROM 
has been written so that the first instruction is at address 0005 
The hardware must be in memory mode o or 1, or else the 
boot ROM will not be switched in. This operation can be 
done with an OUT instruction and then a AST O can be exe
cuted to have the ROM switched in 

Hardware 114 



Restarts can be redirected at any time while the ROM is 
switched in All restarts jump to fixed locations in RAM and 
these areas may be changed to point to the routine that is to be 
executed 

Restart RAM Location Default Use 
0 none Cold Start/Boot 
8 4000H Disk 110 Request 

10 4003H Display string 
18 4006H Display block 
20 4009H Byte Fetch (Called by Loader) 
28 400CH File Loader 
30 400FH Keyboard scanner 
38 4012H Reserved for future use 
66 4015H NMI (Floppy 110 Command 

Complete) 

The above routines have fixed entry parameters These are de
scribed here 

Disk 1/0 Request (AST BH) 

Accepts 
A 
B 

C 

DE 

HL 

Returns 
z 

NZ 

Error Codes 
3 

8 
9 

11 
12 

1 lor floppy, 2 lor hard disk 
Command 
Initialize 
Restore 
Seek 
Read 12 (All reads have an im-

plied seek) 
Sector number lo read 
The contents of the location disktype 
( 405CH) are added to this value before 
an actual read II the disk is a two sided 
floppy, just add 18 to the sector number 
Cylinder number (Only E is used in 
lloppy operations) 
Address where data from a read opera
tion is to be stored 

Success, Operation Completed 
Error, Error code in A 

Hard Disk drive is not ready 
Floppy disk drive is not ready 
Hard Disk drive is not available 
Floppy disk drive is not available 
Drive Not Ready and no Index (Disk in 
drive, door open) 
CRC Error 
Seek Error 
Lost Data 
ID Not Found 

Display String (AST 1 OH) 

Accepts 
HL 

DE 

Returns 
Success Always 

A 
DE 
HL 

Pointer to text to be displayed 
Text must be terminated with a null (0) 
Offset position on screen where text is to 
be displayed 
(A 0000H will be the upper lell-hand cor
ner of the display ) 

Altered 
Points to next position on video 
Points to the null (0) 

Display Block (AST 1 BH) 

Accepts 
HL 

or 

Points to control vector in the format: 
+0 Screen Offset 
+2 Pointer to text 
null 
+4 Pointer to text. 
null 

+n word FFFFH 

+n word FFFEH 

terminated with 

terminated with 

End of control 
vector 
Next word is 
new Screen 
Offset 

If Z flag is set on entry. then the first screen offset is read from 
DE instead of from the control vector 

Each siring is positioned after the previous string. unless a 
FFFEH entry is found This is used heavily in the ROM to re
duce duplication of words in error messages 

Returns 
Success Always 

DE Points to next position on video 

Byte Fetch (AST 20H) 

Accepts None 
Returns 

z 
NZ 

Errors 

10 

Success, byte in A 
Failure, error code in A 

Any errors from the disk 110 call and: 
ROM Image can't be loaded - Too many 
extents 
ROM Image can·t be loaded- Disk drive 
is not ready 

Hardware 115 



File Loader (AST 28H) 

Accepts None 

Returns 
z 

NZ 

Errors 

Success 
Failure. error code in A 

Any errors from the disk l/0 call or the 

byte fetch call and: 
O The ROM image was not found on drive 0 

There are several pieces of information left in memory by the 
boot ROM which are useful to system programmers These are 

shown below: 

RAM Location 
401DH 

4055H 

4056H 
4057H 

4059H 

405BH 

405CH 

Description 
ROM Image Selected (% for none 

selected or A·G) 
Boot type 

2 ~ Hard disk 
3 ~ ARCNET 
4 ~ RS-232C 

5 • 7 Reserved 
Boot Sector Size (1 for 256, 2 for 512) 

RS-232 Baud Rate (only valid on RS-
232 boot) 
Function Key Selected 
0 No function key selected 

<F1>or<1> 86 
<F2> or <2> 87 
<F3> or <3> 88 
<Caps> 85 
<Ctrl> 84 
< Left-Shift> 82 
<Right-Shift> 83 
Reserved 80-81 and 89-90 

Break Key Indication (non-zero if 
<Break> pressed) 
Disk type (0 for LOOS/ 

TRSDOS 6, 1 for 

TRSDOS 1 x) 

Keep in mind that Model Ill ROM image will initialize these 
areas, so this information is useful only to the Model 4 mode 
programmer 

4.2.7 RAM 

1wo configurations ol Random Access Memory (RAM) are 

available on the Model 4P: 64K and 128K The 64K and 128K 
option use the 6665-type 64K x 1 200NS Dynamic RAM, which 

requires only a single + 5v supply voltage 

The DRAMs require multiplexed incoming address lines This 
is accomplished by !Cs U110 and U111 which are 74LS157 

muliip!exers Oaia tu am.I !ru111 the DRAMs aie buffered by a 
74LS245 (U118) which is controlled by Gate Array 4 2 (U106) 
The proper timing signals RASO" RAS1 • MUX", and GAS" are 
generated by a delay line circuit U94 U116 (112 of a 74S112) 

and U117 (1/4 of a 74F08) are used to generate a prect1arge 
circuit During M1 cycles of the 280A in 4 MHz mode the t,igh 

time in MREO has a minimum time of 110 nanosecs The spec
ification of 6665 DRAM requires a minimum of 120 nanosccs so 
this circuit will shorten the MREQ signal during the M1 cycle 

The resulting signal PMREQ is used lo start a RAM memory 
cycle lhrougt1 U114 (a 74S64) Each different cycle is controlled 
at U114 to maintain a fast M1 cycle so no wait states are re
quired The output of U114 (PRAS") is ANDedwilh RFSH to not 
allow MUX" and GAS" to be generated during a REFRESH 

cycle PRAS" also generates either RASO" or RAS1 • depend

ing on which bank of RAM the CPU is selecting GCAS" gen
erated by the delay line U94 is latched by U116 (1,2 of a 
74S112) and held to the end of the memory cycle The output 

of U116 is ANDed with VIDEO signal to disable tt1e GAS" signal 
from occurrin~ if the cycle is a video memory access Refer to 
M1 Cycle Timing (Figure 4-7 and 4-8), Memory Read and 

Memory Write Cycle Timing (Figure 4-9) and (Figure 4-10) 

Hardware 116 



I 
0, 

a. 
:;; 
0, 

I al 

--.J 

MODE fl 

BOOT ROM 4K 

RAM lfJK 
READ ONLY (DESPAGE, ENPAGE, 

SRCPAGE) 
KEYED lK 
VIDEO lK 

<"11111111 
( 1,1,.0) 

RAM 16K 

----

RAM 32K 

(1, 1,1) 

l/"·1.,, 
<"11111111 (.0,1,lJ 

SEL.0 = 
SELl = 
ROM= 

STATE 

.0 
.0 
1 

I 

LEVEL 

.0V 

.0V 

.0V 

32K RAM 

---

32K RAM I I 

Figure 4-4. Memory 

MODE 0 

RAM 14K 
READ ONLY 

(DESPAGE, ENPAGE, 
SRCPAGE) 

KEYED lK 
VIDEO lK 

RAM 16K 

---

RAM 32K I:_. 

SEL.0 = 
SELl = 
ROM= 

(1,1,.0) 

<.0,Lll 

STATE 

0 
.0 
0 

11 32K RAM 

,_ ____ 

'I 

LEVEL 

.0V 

.0V 
sv 

32K RAM 



:::c 
Ill 
a 
:;; 
Ill 
al 

.,; 

MODE 1 

BOOT ROM 4K 

RAM 14K 

IWRITE ONLY4Kl(DESPAGE, ENPAGE, 
• ·• SRCPAGE) 
t--K""E""y""a""D ..... l~K~-1 

VIDEO lK .. (1,1,/l') 
32K RAM 

RAM 16K (1,1,1) 

r------

(/l',1,/l') 

RAM 32K (/l' ,1,1) 
32K RAM 

STATE LEVEL 

SEL/l' = 1 5V 
SELl = 95 /l'V 
ROM= 95 5V 

Figure 4-5. Memory 

RAM 14K 

KEYBD lK 
VIDEO lK ' 

i 

RAM 16K 

,._. ____ , 

RAM 32K 

MODE 1 

DESPAGE, ENPAGE, 
SRCPAGE) 

c 1,1,/l') 

(/l',1,/l') 

~ (/l',1,1) 

32K RAM 

------

32K RAM 

STATE LEVEL 

SEL/l' = 1 5V 
SELl = 95 /l'V 
ROM= 1 95V 



I 
I 
OJ 
a. 
:e 
OJ 
co 

(0 . 

MODE 2 

(DESPAGE. ENPAGE, 
SRCPAGEJ 

RAM 32K I ◄ 

----~ 

RAM 29K 

KEYED lK 
VIDEO 2K 

I 

SEL,0 = 
SELl = 
ROM= 

(1,1,,0) 

(1,1,1) 

X 

STATE 

,0 
l 
X 

32K RAM 

I 

r-----7 

I 32K RAM 

LEVEL 

,0v 
sv 

I 

Figure 4-6. Memory 

MODE 3 

(DESPAGE, ENPAGE, 
SRCPAGE) 

RAM 32K ""111111: 

\ 

r---, 

I RAM 32K I 

SEL,0 = 
SELl = 
ROM= 

( 1, 1,,0) 

I\ 

STATE 

l 
l 
X 

11 32K RAM 

r-----

D 

LEVEL 

sv 
sv 

32K RAM 



I 
£l) 

i3. 
:;; 
£l) 

;;:; 

"' 0 

Tl 

( 2MHz} PCLK _J 

WAVEFORMS 

WftVlllom'> 

~ 
~ 

1.h,sl Be 
V,J'.•j 

Dutou! 

~ ,,;;"~'.~' 

ITlllT Chanqe w,11 Ctiariqe 
••cm L 10 H From L !OM 

T2 

WeV11forrn 
Svmbol 

GYlYll5{x 

T3 

~ 

o,ang•ng 
S1a1e 

..,,gh 

T4 

A0-Al5 ::::) I C 
Ml 

MREQ ______ __, 

RD--------

RFSH -------------------------" 
L 

PMREQ _______ _, I r-
RAMRDEN ___j \l 

PRAS*--------

RASEN0* or-, n I 
RASENl* • • • 

RAS0* or _______ __, 

RASl* 

MUX* ----------, 

CAS*----------

DRA0-DRA 7 ~ ROW ADD. I COL. ADD. JNyJJ$@@ REFRESH ADD. C 
MD0-MD7 { VALID DATA ) 

Figure 4-7. M➔ ~·•cle Timing (2MHZ) 



I Tl I T2 I T3 
I T4 

( 4MHz) PCLK _J ' I \ ' ' I ' Af)'-Al5 

Ml 

MREQ 

RD 

I 
RFSH 

ru 
a. 
:;; PMREQ ru 
ro 
~ RAMRDEN 

PRAS* 

RASEN0'* or 
RASENl* 

RAS0'* or 
RASl* 

MUX" 

CAS* 

DRA0-DRA7 xxxxxxxxxxxx ROW ADD. x COL. ADD. I REFRESH ADD. 1 
MD0'-MD7 VALID DATA 

Figure 4-8. M1 Cycle Timing (4MHZ) 



I 
!)) 

a. 
~ 
co 
I\) 
I\) 

PCLK ..J 
A,0-Al5 

MREQ 

RD 

PMREQ 

RAMRDEN 
PRAS* 

Tl Tz 

\ 
T3 

1 I L 
x:= 

L_ 

_________________ r-RASEN,0* or 
RASENl* 

RAS,0* or 
RASl* 

MUX* 

CAS* 
I 

DRA,0-DRA7 g~zAA/INV\/( ROW ADD. x COL. ADD. 'Hll$~ 
MD,0-MD7 VALID DATA 

Figure 4-9. Memory Read Cycle Timing 



I 
Tl 

I 
T2 

I 
T3 

PCLK _j \ I \ I \ I L 
A0-Al5 

MREQ 

WR 

PMREQ 
::i: 
Ill 
a. RAMWREN :;; 
Ill 
iil 
;;; PRAS* 

"' RASEN/l* or 
RASENl* 

RAS0* or 
RASl* 

MUX* 

CAS* 

DRA/l-DRA7 NWV'i'NI ROW ADD. X COL. ADD. xxxxxxxx= 
MD0-MD7 (l¼ WRITE DATA ) 

Figure 4-10. Memory Write Cycle Timing 



Memory Map - Model 4P 

Mode0 SEL0 0 - ov Mode 1 SEL0 +5V 
SEL1 0 ov SEL1 ov 
ROM - 1 ov ROM = 0 -i SV 

0000-0FFF Bool ROM 4K 0000-37FF RAM 14K 
1000-37FF RAM (Read Only) 10K 3800-3BFF Keyboard 1K 
37E8-37E9 Printer Status (Read Only) 3C00-3FFF Video 1K 
3800-3BFF Keyboard 1K 4000- FFFF RAM 48K 
3C00-3FFF Video 1K 
4000-FFFF RAM 48K 

Mode 2 SEL0 - a = av 
SEL1 1 - +5V 

Mode0 SEL0 0 = ov ROM X Don I Care 
SEL1 a - ov 
ROM 0 +5V 0000- F3FF RAM 61K 

F400- F7FF Keyboard 1K 
0000-37FF RAM (Read Only) 14K FB00- FFFF Video 2K 
37E8-37E9 Printer Status (Read Only) 
3800-3BFF Keyboard 1K 
JL:UU- Jl-1-1- v1aeo '" 1v1oae j SELU = .,- OV 

4000-FFFF RAM 48K SEL1 - 1 +5V 
ROM X Don't Care 

Mode 1 SEL0 = 1 = +5V 0000-FFFF RAM 64K 
SEL1 0 = ov 
ROM = av 

0000-0FFF Boot ROM 4K 
0000-0FFF RAM (Write Only) 4K 
1000-37FF RAM 10K 
3800-3BFF Keyboard 1K 
3C00-3FFF Video 1K 
4000-FFFF RAM 48K 

Hardware 124 



1/0 Port Assignment 

Normally 
Port# Used Out In 

FC FF FF CASSOUT' MODIN' 
FS-FB FS LPOUT' LPIN • 
F4-F7 F4 DRVSEL' (RESERVED) 
F0-F3 DISKOUT' DISKIN' 
F0 F0 FDC COMMAND REG FDC STATUS REG 
F1 F1 FDC TRACK REG FDC TRACK REG 
F2 F2 FDC SECTOR REG FDC SECTOR REG 
F3 F3 FDC DATA REG FDC DATA REG 
EC-EF EC MODOUT' RTCIN' 
ES-EB RS232OUT' RS232IN' 
EB ES UART MASTER RESET MODEM STATUS 
E9 E9 BAUD RATE GEN REG (RESERVED) 
EA EA UART CONTROL AND 1JART STATUS REG 

MODEM CONTROL REG 
EB EB UART TRANSMIT UART HOLDING REG 

HOLDING REG (RESET DR I 
E4-E7 E4 WR NMI MASK REG ' 11D NMI STATUS ' 
E0-E3 E0 WR INT MASK REG RD INT MASK REG • 
A0-DF (RESERVED) (RESERVED) 
9C-9F 9C BOOT' (RESERVED) 
94-98 (RESERVED) (RESERVED) 
90-93 90 SEN' (RESERVED) 
SC-SF GSEL0' GSEL0' 
88-88 CRTCCS' (RESERVED) 
88, SA 88 CRCT ADD REG (RESERVED) 
89, 88 89 CRCT DATA REG (RESERVED) 
84-87 84 OPREG' (RESERVED) 
80-83 GSEL1' GSEL1 • 

Hardware 125 



1/0 Port Description 

Name: CASSOUT • 
Port Address: FC - FF 

Access: WRITE ONLY 

Description: Output data lo cassette or for sound 

generation 

Note: The Model 4P does not support cassette storage 

1t1is port is only used lo generate sound that was to 
be output via cassette port The Model 4P sends 

data to onboard sound circuit 

DO = Cassette output level (sound data output) 

D1 Reserved 

D2- D7 Undefined 

Name: MODIN· (CASSIN") 
Port Address: FC - FF 
Access: READ ONLY 

Description: Configuration Status 

DO 0 

D1 = CASSMOTORON STATUS 

D2 MODSEL STATUS 

D3 ENALTSET STATUS 

D4 ENEXTIO STATUS 

D5 (NOT USED) 

D6 FAST STATUS 

D7 =O 

Name: LPOUT • 

Port Address: FS - FB 
Access: WRITE ONLY 

Description: Output data to line prinler 

D0-D7 ASCII BYTE TO BE PRINTED 

Name: LPIN • 

Port Address: F8 - FB 
Access: READ ONLY 

Description: Input line printer status 

DO - 03 = (RESERVED) 

D4 FAULT 

1 TRUE 

O = FALSE 

D5 UNIT SELECT 

1 = TRUE 
FALSE 

D6 OUTPAPER 

1 TRUE 

0 = FALSE 

D7 = BUSY 
1 TRUE 

0 FALSE 

Name: DRVSEL" 
Port Address: F4 - F7 

Access: WRITE ONLY 

Description: Output FDC Configur a lion 

Note: Output lo lt1is port will ALWAYS cause a 1-2 mscc 

(Microsecond) wait lo the ZBO 

DO DRIVE SELECT 0 

D1 = DRIVE SELECT 1 

D2 (RESERVED) 

D3 = (RESERVED) 

D4 = SDSEL 

D5 

O SIDE 0 

SIDE 1 

PRECOMPEN 

0 = No write precompensation 
1 Write Precompensation enabled 

D6 = WSGEN 

0 No wail state generated 
wait state generated 

Note: This wait state is to sync ZSO with FDC chip during 

FDC operation 

D7 ODEN· 

O Single Density enabled (FM) 
Double Density enabled (MFM) 

Hardware 126 



Name: DISKOUT' 
Port Address: F0 - F3 
Access: WRITE ONLY 
Description: Output to FDC Control Registers 

Port F0 FDC Command Register 

Port F1 = FDC Track Register 

Port F2 FDC Sector Register 

Port F3 = FDC Data Register 

(Refer to FDC Manual for Bit Assignments) 

Name: DISKIN ' 
Port Address: F0 - F3 
Access: READ ONLY 
Description: Input FDC Control Registers 

Port F0 = FDC Status Register 

Port F1 FDC Track Register 

Port F2 = FDC Sector Register 

Port F3 = FDC Data Register 

(Refer to FDC Manual for Bit Assignment) 

Name: MODOUT ' 
Port Address: EC - EF 
Access: WRITE ONLY 
Description: Output to Configuration Latch 

DO = (RESERVED) 

D1 

D2 

D3 

= CASSMOTORON (Sound enable) 
O = Cassette Motor Off (Sound enabled) 
1 = Cassette Motor On (Sound disabled) 

MODSEL 
o = 64 or 80 character mode 
1 = 32 or 40 character mode 

= ENALTSET 
0 = Alternate character set disabled 
1 = Alternate character set enabled 

D4 ENEXTIO 
0 External 10 Bus disabled 
1 = External 10 Bus enabled 

D5 (RESERVED) 

D6 = FAST 
0 = 2 MHZ Mode 

4 MHZ Mode 

D7 = (RESERVED) 

Name: RTCIN ' 
Port Address: EC - EF 
Access: READ ONLY 
Description: Clear Real Time Clock Interrupt 

D0-D? DONTCARE 

Name: RS232OUT' 
Port Address: EB - EB 
Access: WRITE ONLY 
Description: UART Control. Data Control, Modem Control 

BAG Control 

Port EB = UART Master Reset 

Port E9 = BAUD Rate Gen Register 

Port EA UART Control Register (Modem Control Reg ) 

Port EB = UART Transmit Holding Reg 

(Refer to Model Ill or 4 Manual for Bit Assignments) 

Name: RS232IN' 
Port Address: EB - EB 
Access: READ ONLY 
Description: Input UART and Modem Status 

Port EB = MODEM STATUS 

Port E9 (RESERVED) 

Port EA = UART Status Register 

Port EB UART Receive Holding Register (Resets DR) 

(Refer to Model Ill or 4 Manual for Bit Assignments) 

Hardware 127 



Name: WRNMIMASKREG ' 
Port Address: E4 - E7 
Access: WRITE ONLY 
Description: Oulpul NMI Laich 

DO-D5 

D6 

D7 

(RESERVED) 

= ENMOTOROFFINT 
0 Disables Moloroll NMI 
1 - Enables Moloroll NMI 

ENINTRO 
0 Disables INTRO NMI 
1 - Enables INTRO NMI 

Name: RDNMISTATUS ' 
Port Address: E4 - E7 
Access: READ ONLY 
Description: Input NMI Slalus 

DO - D 

D2 - 04 = (RESERVED) 

05 = RESET (no! needed) 
0 Reset Asserted (Problem) 
1 = Reset Negated 

06 = MOTOROFF 

07 

Name: 

0 = Moloroll Asserted 
1 = Moloroll Negated 

INTRO 
0 = INTRO Asserted 

INTRO Negated 

WRINTMASKREG · 
Port Address: EO - E3 
Access: WRITE ONLY 
Description: Oulpul INT Lalcl1 

00-01 

02 

(RESERVED) 

ENRTC 
O Real lime clock inlerrupl disabled 
1 = Real lime clock inlerrupl enabled 

03 ENIOBUSINT 

04 

0 = External 10 Bus inlerrupl disabled 
1 External 10 Bus inlerrupl enabled 

ENXMITINT 
0 = RS232 Xmil Holding Reg empty 
disabled 
1 RS232 Xmil Holding Reg empty 
enabled 

int 

int 

05 - ENRECINT 
0 - RS232 Rec Dala Reg lull in! disabled 
1 - RS232 Rec Dala Reg lull in! enabled 

06 = ENERRORINT 

07 

Name: 

0 = RS232 UART Error inlerrupls disabled 
1 = RS232 UART Error inlerrupls enabled 

(RESERVED) 

RDINTSTATUS ' 
Port Address: EO- E3 
Access: READ ONLY 
Description: lnpul INT Slalus 

DO - 01 (RESERVED) 

02 = RTC INT 

03 IOBUSINT 

U4 = Hc;:!J~ XMI I IN I 

D5 = RS232 REC INT 

06 RS232 UART ERROR INT 

07 (RESERVED) 

Name: BOOT' 
Port Address: 9C - 9F 
Access: WRITE ONLY 
Description: Enable or Disable Boo! ROM 

DO = ROM' 
0 Bool ROM Disabled 
1 = 8001 ROM Enabled 

01 - 07 = (RESERVED) 

Name: SEN' 
Port Address: 90- 93 
Access: WRITE ONLY 
Description: Sound oulpul 

DO = SOUND DATA 

01 -07 (RESERVED) 

Hardware 128 



Name: OPREG • 
Port Address: 84 
Access: WRITE ONLY 
Description: Output to operation reg 

DO = SELO 

01 = SEL1 

SEL1 
0 

0 

SELO 
0 

02 = 8064 
0 64 character mode 
1 = 80 character mode 

03 = INVERSE 
0 Inverse video disabled 
1 = Inverse video enabled 

MODE 
0 

04 = SRCPAGE - Points lo the page lo be mapped 
as new page 

0 = U64K, L32K Page 
1 U64K. U32K Page 

05 EN PAGE - Enables mapping of new page 
0 Page mapping disabled 

Page mapping enabled 

06 DESPAGE Points lo the page where new 
page is to be mapped; 

0 = L64K, U32K Page 
1 = L64K, L32K Page 

07 = PAGE 
0 = Page O of Video Memory 
1 Page 1 of Video Memory 

Hardware 129 



4.2.B Video Circuit 

The heart of the video display drr.uit in the Model 4P is the 

68045 Cathode Ray Tube Controller (CRTC) U42 The CRTC 
is a preprogrammed video controller that provides two screen 
tormats: 64 by 16 and 80 by 24 The format is controlled by pin 
3 of the CRTC (8064 ') The CRTC generates all of the neces
sary signals required for the video display These signals are 

VSYNC (Vertical Sync), HSYNC (Horizontal Sync) for proper 
sync of the monitor, DISPEN (Display Enable) which indicates 
when video data should be output to the monitor, tt,e refresh 

mernory addresses (MAO-MA 13) whict, addresses the video 
RAM, and tt,e row addresses (RA0-RA4) which indicates wt>ich 
scan line row is being displayed The CRTC also provides hard
ware scrolling by writing to the internal Memory Start Address 
Register by OUTing to Port 88H The internal cursor control of 
the 68045 is not used in the Model 4P video circuit 

Since the 80 by 24 screen requires 1,920 screen memory lo
cations a 2K by 8 static RAM (U82) is used for tt,e video RAM 
Addressing to the video RAM (U82) is provided by the 68045 
when refreshing tt,e screen and by the CPU when updating of 
the data is performed These two sets of address lines are mul
tiplexed by three 74LS157s (U41 U61 and U81) The multi
plexers are switched by CRTCLK which allows the CRTC to 
address the video RAM during the high state of CRTCLK and 
the CPU access during the tow state A 10 from the CPU is con
trolled by PAGE' which allows two display pages in the 64 by 
16 format When updates to the video RAM are performed by 
the CPU. the CPU is held in a WAIT state until the CRTC is not 
addressing the video RAM Tt1is operation allows reads and 
writes to video RAM without causing hashing on the screen 
The circuit that performs this function is a 7 4LS244 buffer 
(U84) an 8 bit transparent latch_ 74LS373 (U83) and a Delay 
line circuit shared with Dynamic RAM timing circuit consisting 
of a 74LS74 (U98), 74LS32 (U96), 74LS04 (U95) 74LS00 
(U92) 74LS02 (U69) and Delay Line (U94) During a CPU 
Read Access to the Video RAM. the address is decoded by the 
GA 4 2 and asserts VIDEO' low This is inverted by U95 (1 6 of 
74LS04) which pulls one input of U92 (114 of 74LS00) and in 
turn asserts VWAIT • low to the CPU RD is high at this time and 
is latched into U98 (112 of 74LS74) on the rising edge of 
XADR7' inverse of CRTCLK 

When RD is latched by U98 the O output goes low releasing 
WAIT' from the CPU The same signal also is sent to tt,e Delay 
Line (U94) throunh ll117 (114 of 74F08) The Delay line delays 
the falling edge 240 ns for VLATCH' whict, latches the read 
data from tt1e video RAM at U83 The data is latched so tt,e 
CRTC can refresh the next address location and prevent any 
hashing MRD' decoded by U106 and a memory read is ORed 
with VIDEO' which enables the data from U83 to the data bus 
The CPU then reads the data and completes the cycle A CPU 
write is slightly more complex in operation As in the RD cycle 
VIDEO' is asserted low which asserts VWAIT' low to the CPU 
WR is high at this lime which is NANDed wilt> VIDEO and 
synced with CRTCLK to create VRAMDIS tt1at disables tt,e 
video RAM output On the rising edge of XADR7', WR is 
latched into U98 (112 of 74LS74) whict, releases VWAIT' and 
starts cycle through the Delay Line After 30ns DLYVWR' (De
layed video write) is asserted low which also asserts VBUFEN' 
(Video Buffer Enable) low VBUFEN' enabled data from the 
Data bus to the video RAM Approximately 120ns later 
DLYVWR' is negated high which writes the data to the video 
RAM and negates VBUFEN' turning off buffer Tt1e CPU then 
completes WR cycle to the video RAM Refer to Video RAM 
CPU Access Timing Figure 5-12 for timing of above RD or WR 
cycles 

During screen refresh CRTCLK is high allowing the CRTC 
to address Video RAM The data out of the video RAM is 
latched by LOAD' into Gate Array 4 3 (U102) INVERSE' 
determines if character should be alpha-numeric only (IN
VERSE' high) or unchanged (INVERSE' low) A9 is de
coded with ENALTSET (Enable Alternate Set) and 7 which 
controls the alternate set in the character generator ROM 
See ENALTSET Control Table below 

ENALTSET 07 06 A9 
0 0 0 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 0 

Hardware 130 



:i:: 
"' 
~ 
"' cil 

~ 

2.0M 

PCLK* 

A0-Al5 

MREQ 

RD 

WR 

CRTCLK 

XADR7* 

VIDEO* 

VIDEO 

098 .8 

VWAIT* 

VRAMDIS 

DLYVWR* 

VBOFEN* 

VLATCH* 

083 .1 

Tl 

RD CYCLE 

T2 TW T3 Tl T2 

Figure 4-11. Video RAM CPU Access Timing 

WR CYCLE 

Tw TW T3 Tl 



RA0·RA3, row addresses from the CRTC are used to control 
which scan line is being displayed The Model 4P has a 4-bit full 
adder 74LS263 (U101) to modify the nov-1 address During o 
character display DLYGRAPHIC' is high which applies a high to 
all 4 bits to be added to row address This will result in subtract
ing one from Row address count and allow a!I characters to be 
displayed one scan line lower The purpose is so inverse char -
acters will appear within the inverse block When a graphic 
block is displayed DLYGRAPHIC' is low which causes the row 
address to be unmodified Moving jumper from E14-E15 to 
E15-E16 will disable this circuit 

DLYCHAR' and DLYGRAPHICS are inverse signals and control 
which data is to be loaded into the internal shift register of U102 
When DLYCHAR' is low and DLYGRAPHIC" is high, the Ct1ar
acter Generator ROM (U103) is enabled to output data When 
DLYCHAR' is high and DLYGRAPHIC' is low the graphics char
acters are internally buffered to the st1ift register The data is 
loaded into the internal shift register on the rising edge of 
SHIFT' when LOADS' is low Serial video data is output 
U102 19 The video information is inverted by U142 and F83, is 
filtered by R14 (47 ohm resistor) and C227 (100 pl Cap) and 
output to video monitor VSYNC and HSY NC are butlered by ( 1 / 
2 of 7 4LS86) U143 and are also output to video monitor Refer 
to Video Circuit Timing Figure 4-12 and Inverse Video Tim
ing Figure 4-13 for timing relationships of Video Circuit 

4.2,9 Keyboard 

The keyboard interface of the Model 4P consists of open col
lector drivers which drive an 8 by 8 key matrix keyboard and an 
inverting buffer which buffers the key or keys pressed on the 
data bus The open collector drivers (U57 and U?? (7 416) are 
driven by address lines AO-A 7 which drive the column lines of 
the keyboard matrix The ROW lines of the keyboard are pulled 
up by a 1 5 kohm resistor pack RP2 The ROW lines are buff. 
ered and inverted onto the data bus by U78 (74LS240) which is 
enabled when KEYBD" is a logic low KEYBD' is a memory 
mapped decode of addresses 3800-3BFF in Model Ill Mode 
and F400-F7FF in Model 4/4P mode Refer to the Memory Map 
under Address Decode for more information During real time 
operation, the CPU will scan the keyboard periodically to check 
if any keys are pressed If no key is pressed, the resistor pack 
RP2 keeps the inputs of U78 at a logic high U78 inverts the 
data to a logic low and buffers it to the data bus which is read 
by the CPU If a key is pressed when the CPU scans tt1e correct 
column line, the key pressed will pull the corresponding row to 
a logic low U78 inverts the signal to a logic high which is read 
by the CPU 

4.2.10 Real Time Clock 

The Rea! Time Clock Circuit in the Model 4P rrnvir!As a 30 Hz 

(in the 2 MHz CPU mode) or GO Hz (in the 4 MHz CPU mode) 
interrupt to the CPU By counting tt1e number of interrupts that 
have occurred. the CPU can keep track ol the time The 60 Hz 
vertical sync signal (VSYNC) from the video circuitry is used for 
the Real Time Clocks reference In the 2 MHz mode, FAST is 
a logic low which sets the Preset input, pin 4 of U23 (74LS74), 
to a logic high This allows tt1e 60 Hz (VSYNC) to be divided by 
2 to 30 Hz The output of 1/2 of U23 is ORed with the original 
60 Hz and then clocks another 74LS74 (1/2 of U23) If the real 
time clock is enabled (ENRTC at a logic high), the interrupt is 
latched and pulls the INT' line low to the CPU When the CPU 
recognizes the interrupt, the pulse is counted and the latch re
set by pulling RTCIN' low In the 4 MHz mode, FAST is a logic 
high which keeps the first half of U23 in a preset state (the o· 
output at a logic low) The 60 Hz is used to clock the interrupts 

NOTE: If interrupts are disabled, the accuracy of tt1e real 
time clock will suffer 

4.2.11 Line Printer Pon 

The Line Printer Port Interface consists ol a pulse generator, an 
eight-bit latch, and a status line bulfer The status of tt1e line 
printer is read by the CPU by enabling buffer U3 (74LS244) 
This bulfer is enabled by LPRD' which is a memory map and 
port map decode In Model Ill mode, only the status can be read 
from memory location 37EB or 37E9 The status can be read in 
all modes by an input from ports FB-FB For a listing of the bit 
status, refer to Port Map section 

After the printer driver software determines that the printer is 
ready for printing (by reading the correct status) the characters 
to be printed are output to Port FB-FB U2, a 74LS374 eight-bit 
latch, latches the character byte and outputs to the line printer 
One-half of U1 (74LS123), a one-shot, is then triggered which 
generates an appropriate strobe signal to the printer which sig
nifies a valid character is ready The output of the one-shot is 
buffered by 1 /6th of the U51 (74LS04) to prevent noise from the 
printer cable from false-triggering tt1e one-shot 

Hardware 132 



I 

"' a. 
:i; 

"' m 
w 
"' 

CRTCLK 

082 
SRAa-sRAla 

082 
SR□a - SRD7 

LOAD* 

01a2 
CGA3-CGAla 

CHAR 

DLYCHAR* 

DLYGRAPHIC* 

01a2 
CG□a-CGD7 

GRAPHICS 
DATA 
INTERNAL 
01a2 

SHIFT* 

SHIFT/LO 
INTERNAL 
TO 01i2 

VOUT* 
01i2.19 

w lMS 

Waveform Waveform 

Symbol 
Input Output Symbol 

!nput Outout 

\1ust Be 'Nill Be Don i Care Cr.ang1ng 

va:1d '✓ alid ,XXXX'J(XXX ~nv (harqe Staie 
::ip,m111ea \..Jnk.nown 

\\\\\'\ Chanqe W11! Chanoe 
F,om H !O L From H to L 1-1,qh 

·moeaance 

illllJ Chanqe Will Change 

;:,om L to rl From L 10 H 

V - ~ CPU ADD. y CRTC ADD. I CPU ADD. X CRTC ADD. y CPU ADD. ,c::,_ 
-fVALID DATA' VALID DATA VALID DATA VALID DATA ( VALID DATA'x1 (vALID DATA' 

--u LI LI 
----
m wxmxxX&vxxxiwvvxX&1 Mxxxwmxxxvvxvxxxm ~xxxxxxxxvxxvvsxxx 

JNv\'xVX XX UW'.¥ VALID DATA mvx@ *xxxxxxxxxxxxz»c= 
VALID DATA 

t_J LJ LJ 

Figure 4-12. Video Circuit Timing 



J: 
!l) 

a. 
~ 
!l) 

cil 
w .... 

CRTCLK 

U82 
SRAJl-SRAl,0 

U82 
SRD)J-SRD7 

LOAD* 

Uljl2 
CGA3-CGA1Jl 

Ul)J2 
CGD,0-CGD7 

SHIFT* 

LOADS* 

DISPEN 

DLYDISPEN 
INTERNAL 
TO U1Jl2 

DLYBLANK 
INTERNAL 
TO Ul)J2 
SHIFT/LO 
INTERNAL 
TO U1Jl2 

VOUT* 
Ul)J2.19 

,._J \ L_..J ,.____.r~ 
I CPU ADD. lcRTC ADD.c~CRTC ADD.I CPU ADD.ICRTC ADD.~§_jcRTC ADD.I CPU ADD. XcRTC ADD.c 

cf 1 ..................... .u----~-______ i~-------'-
""w.MNr,--r.=x~x)""'----~w:1"'71 m txxxxxm -Qx:m/Yil w;xxM m 

X 

,,~ 
----- rH 

l_ _____ _ 

L _______ , 

r r;rrrn-u..u..j 
u Lr' 

Figure 4-13. Video Blanking Timing 



I 
Ol 
a. 
:e 
Ol 
ro 
w 
01 

CRTCLK~ 

U82 CRTCADD.lCPU ADD.ICRTC ADD. 
SRA/f-SRAl.0 

U82 
SRD.0-SRD7 

LOAD* 71 
Ul,02 :::x 

CGA3-CGA1.0 

CGD~=~~D7 ~a 
SHIFT* 

SHIFT/LO 
INTERNAL LJ 
TO Ul,02 

INVERSE 

INVERSE* 
INTERNAL TO Ul,02 

VIDEO DATA 
INTERNAL TO Ul,02 

VOUT* 
Ull/2.19 

u u 
~ X 
wxxmxgy wxxxxj 

u u 

Figure 4•14. Inverse Video Timing 

\ \ L_ 

u u u 
X X I 

wxuw 0XxxM\;( xzm: 

u u u---



4.2.12 Graphics Port 

The Graphics rort (J7) on the Model 4P is pi0vided to attach 
the optional Graphics Board Tt,e port provides 00-07 (Data 
Lines), AO-A3 (Address Lines). IN' GEN" and RESET' for the 
necessary interface signals for the Graphics Board GEN' is 
generated by negative ORing Port selects GSELO' (8C-8FH) 
and GSELi' (80-83H) together by (1/4 of 74LS08) U4 The re
sulting signal is negative ANDed with IORQ' by (114 of 74S32) 
U24 Seven timing signals are provided to allow synchroniza
tion of Main Logic Board Video and Grapt1ics Board Video 
These liming signals are VSYNC, HSYNC, DISPEN, DCLK. 
H, I, and J Three control signals from the Graphics Board 
are used to sync to CPU access and select different video 
modes WAIT' controls the CPU access by causing the CPU 
to WAIT till video is in retrace area before allowing any 
writes or reads to Graphics Board RAM ENGRAF is as
serted when Graphics video is displayed ENGRAF also dis
ables inverse video mode on Main Logic Board Video 
CL 166' (Clear 7 4L 166) is used to enable or disable mixing 
of Main Logic Board Video and Graphics Board Video If 
r.1 1 AR* i<:: nPr:r:itPrl hiQh lhPn mhdn!J i~ AllnwF!rl in All fnur 

video modes 80 x 24, 40 x 24, 64 x 16, and 32 x 16 If 
CL 166' is asserted low, this will clear the video shift register 
U63, which allows no video from the Main Logic Board In 
this state 8064 • is automatically asserted low to put screen 
in 80 x 24 video mode Refer to Figure 4-15 Graphic Board 
Video Timing for timing relationships Refer to the Model 4/ 
4P Graphics Board Service information for service or techni
cal information on the Graphics Board 

4.2.13 Sound 

The sound circuit in tt,e Model 4P is compatible with the Sound 
Board which was optional in the Model 4 Sound is generated 
by alternately setting and clearing data bit DO during an OUT to 
port 90H The state of DO is latched by U129 ( 112 of a 7 4LS7 4) 
and the output is amplified by 02 which drives a 8H speaker 
The speed of the software loop determines the frequency and 
thus, the pitch of the resulting tone Since the Model 4P does 
not have a cassette circuit, some existing software that used 
the cassette output for sound would have been lost The Model 
4P routes the cassette latch to the sound board through U109 
When the CASSMOTORON signal is a logic low, the cassette 
motor is off, then the cassette output is sent to the sound circuit 

4.2.14 1/0 Bus Port 

The Model 4P Bus is designed to allow easy and convenient in
terfacing of 1/0 devices to the Model 4P Tt1e 1/0 Bus supports 
all the signals necessary to implement a device compatible with 
the Z80s l/0 structure 

Addresses: 

AO to A7 allow selection ol up to 250" input and 2GG output 
devices if external l/0 is enabled 

'Ports 80H to OFFH are reserved for System use 

Data: 

DBO lo DB? allow lransler ol 8-bil dala onto ll1e processor 
data bus is external l/0 is enabled 

Control Lines: 

M 1 • - Z80A signal specifying an M 1 or Operation Code 
Fetch Cycle or with IOREO', it specifies an Interrupt 
acknowledge 

IN' - Z80A signal specifying than an input is in progress 
Logic AND of IOREQ' and WR' 

our Z80A siqnal specifvino that an output is in proq
ress Logic AND of !OREO' and WR' 

IOREO' Z80A signal specifying that an input or output 
is in progress or with M1 • ii specilies an interrupt 
acknowledge 

RESET' - system resel signal 

tOBUSINT' - input to the CPU signaling an interrupt from 
an l/0 Bus device if l/0 Bus interrupts are enabled 

IOBUSWAIT' -input to the CPU wail line allowing 110 Bus 
device to force wait slates on the Z80 if external I •0 is 
enabled 

EXTIOSEL • - input lo l/0 Bus Port circuit which switches 
the 1/0 Bus data bus transceiver and allows and INPUT in
struction lo read 110 Bus data 

Tt1e address line, data line, and all control lines except RESET' 
are enabled only when the ENEXIO bit in port EC is set to one 

To enable 1/0 interrupts, the ENtOBUSINT bit in the PORT EO 
(output port) must be a one However even if it is disabled from 
generating interrupts the status of the IOBUStNT' line can still 
read on tt1e appropriate bit ol CPU IOPORT EO (input port) 

See Model 4P Port Bil assignments for port OFF. OEC. and OED 

Hardware 136 



GRAFVID ~ I X ~ ~ ~ X ~ I y v:= 
ENGRAF 

CL166* 

0143.8 :i I c:i I I L..D, Cl J..J y ) 
I 

"' DOT" or a. 
:;; DCLK "' co 
w VOUT ) i 1 1 1 1 x 1 i I I i I X\ I I □ I I I I -.; 

Figure 4-15. Graphic Board Video Timing 



Tt,e Model 4P CPU board is fully protected from ·foreign 110 de
vices in that all the l/O Bus signals are buffered and can be dis
abled under software control To allach and use and 110 device 
on the 110 Bus, certain requirements (both hardware and soft
ware) must be met 

For input port device use, you must enable external 110 de
vices by writing to port 0ECH with bit 4 on in the user sott
ware This will enable the data bus address lines and control 
signals to the 110 Bus edge conneclor When the input de
vice is selected, the hardware should acknowledge by as
serting EXTIOSEL • low This switches the data bus 
transceiver and allows the CPU to read the contents of the II 
O Bus data lines See Figure 4-16 for the timing. EXTIO
SEL' can be generated by NANDing IN and the 110 port 
address 

Output port device use is the same as the input port device in 
use, in that the external 1/0 devices must be enabled by writing 
to port 0ECH with bit 4 on in the user software - in the same 
fashion 

For either input or output devices the IOBUSWAIT" control line 
can be used m the normal way 1or syncnrornz1ng s1ow aev1ces 
to the CPU Nole Iha! since dynamic memories are used in the 
Model 4P, the wail line should be used with caution Holding the 
CPU in a wait state for 2 msec or more may cause loss of mem
ory contents since refresh is inhibited during this time lt is rec
ommended that the IOBUSWAIT" line be held active no more 
than 500 µ.sec with a 25% duly cycle 

The Model 4P will support ZB0 Mode 1 interrupts A RAM jump 
table is supported by the LEVEL II BASIC ROMs image and the 
user must supply the address of his interrupt service routine by 
writing 1t1is address lo locations 403E and 403F When an in
terrupt occurs, the program will be vectored lo the user-sup
plied address if l/O Bus interrupts have been enabled To 
enable 1/0 Bus interrupts, the user must set bit 3 of Port OE0H 

4.2.15 FDC Circuit 

The TRS-80 Model 4P Floppy Disk Interface provices a stan
dard 5-114" floppy disk controller The Floppy Disk Interface 
supports both single and double density encoding schemes 
Write precompensalion can be software enabled or disabled 
beginning at any track, although the system sottware enables 
write precompensation for al! tracks greater than twenty-one 
The amount of write precompensation is 125 nsec and is not 
adjustable One or two drives may be controlled by the inter
face All data transfers are accomplished by CPU data re
quests In double density operation. data transfers are 
synchronized lo tt,e CPU by forcing a wail lo the CPU and clear
ing the wail by a data request from the FDC chip The end of the 
data transfer is indicated by generation of a non•maskable in
terrupt from the interrupt request output of the FDC chip A 
hardware watchdog timer insures that any error condition will 
not hang the wail line to the CPU for a period long enough to 
destroy RAM contents 

Hardware 138 



Input or Output Cycles 

Af A7 

DATA BUS 

DATA BUS _ _,_ __ _, 

-lnMr1tdby Z80CPU 

Input or Output Cycles with Wait States 

r. r, 

All A7 PORT ADDRESS 

DATA BUS _.,.i_ ___ ___j ____ l----+-------1-{ 

OUT 

'---...i...------1-----1----' 
tEXTIOSEL" 

IComcld•nl wnh IORO° only on INPUT cycle 

Figure 4-16. 1/0 Bus Timing Diagram 

Hardware 139 

READ 
CYCLE 

WRITE 
CYCLE 

~----+--- l ~~~:: 



Control and Data Buffer'ing 

The Floppy Disk Controller Board is an 110 port-mapped device 
which uiilizes pur is E4H FOH F 1 H. F2l ! F3I I and F4H The 

decoding logic is implemented on the CPU board (Refer to Par

agraph 5 1 5 Address Decoding for more information on Port 

Map) U70 is a bi-directional, 8-bit transceiver used to buffer 
data to and from the FDC and RS-232 circuits The direction of 

data transfer is controlled by the combination of contra! signals 

DISKIN', RS2321N' RDINT", and RDNMI' If any of these sig

nals is active (logic low), U70 is enabled to drive data onto the 

CPU data bus If both signals are inactive (logic higt1) U70 is 

enabled to receive data from the CPU board data bus A sec
ond buffer (U36) is used to buffer the FDC chip data to the Foe: 

RS232 Data Bus (BD0-8D7), U36 is enabled all the lime and 

its direction controlled by DISKIN' Again ii DISKIN' is active 
(logic low) data is enabled to drive from the FDC chip to the 

Main Data Susses II DISKIN' is inactive (logic high) data is en

abled to be transferred to the FDC chip 

Nonmaskable Interrupt Logic 

Gate Array 4 4 (U18) is used to latch data bits D6 and D7 on the 
rising edge al the control signal WRNMI" This enables the con

ditions which will generate a non-maskable interrupt to tt1e 
CPU The NMI interrupt conditions which are programmed by 
doing an OUT instruction to port E4H with the appropriate bits 

set If data bit 7 is set, an FDC interrupt is enabled to generate 

an NMI interrupt If data bit 7 is reset interrupt requests request 
from the FDC are disabled II data bit 6 is set, a Motor Time Out 

is enabled to generate an NMI interrupt II data bit 6 is reset, in

terrupts on Motor Time Out are disabled An IN instruction from 
port E4H enables tt1e CPU to determine the source of the non

maskable interrupt Data bit 7 indicates the status of FDC in

terrupt request (INTRO) (0 = true, 1 = false) Data bit 6 indicates 

tt1e status of Motor Time Out (0; true, 1 ; false) Data bit 5 in

dicates the status of the Reset signal (0 = true. 1 = false) The 

control signal RDNMI' gates this status onto the CPU data bus 

wt1en active (logic low) 

Drive Select Latch and Motor ON Logic 

Selecting a drive prior to disk liO operation is accomplished by 

doing an OUT instruction to port F4H with the proper bit set Tt1e 

following table describes the bit allocation of tt1e Drive Select 

Latch: 

Data Bit Function 
DO Selects Drive O when set· 

01 Selects Drive 1 when set' 

02 Selects Drive 2 when set' 

03 Selects Drive 3 when set' 

04 Selects Side O when reset 

Selects Side 1 when set 

05 Write precompensation enabled when set, 

disabled when reset 

06 Generates WAIT if set 

07 Selects MFM mode if set 
Selects FM mode if reset 

'Only one of these bits should be set per output 

Hex D flip-flop U54 (7 4L 17 4) latches the drive select bits, side 

select and FM"1MFivi bits on the rising edge of the 1.,;u11irul :,iyria! 
DRVSEL • Gate Array 4 4 (U18) is used to latch the Wail Ena
ble and Write precompensation enable bits on the rising edge 

of DRVSEL' The rising edge of DRVSEL' also triggers a one

st1ot (1/2 of U54 74LS123) which produces a Motor On to the 
disk drives The duration of the Motor On signal is approxi

mately ttiree seconds The spindle motors are not designed for 

continuous operation Therefore. the inactive state of the Motor 
On signal is used to clear the Drive Select Latch which de-se

lects any drives which were previously selected The Motor On 

one-shot is retriggerable by simply executing another OUT in

struction to the Drive Select Latch 

Wait State Generation and WAITIMOUT Logic 

As previously mentioned. a wait state to the CPU can be inlti~ 

ated by an OUT to tt1e Drive Select Latch witt1 06 set Pin 18 of 

U18 will go high after this operation This signal is inverted by 
114th of U15 and is routed to the CPU where it forces the Z80A 

into a wail state The ZBOA will remain in the wait state as long 

as WAIT' is low Once initiated. the WAIT' will remain low until 
one of five conditions is satisfied II INTRO ORO, and RESET 

inputs become active (logic high) it causes WAIT' to go high 

which allows the ZBO to exit the wait state An internal timer in 

U18 serves as a watchdog timer to insure that a wait condition 

will not persist long enough to destroy dynamic RAM contents 

This internal watchdog timer logic will limit the duration of a wait 
to 1024µsec even if the FOG chip should fail to generate a 

ORO or an INTRO 

If an OUT to Drive Select Latch is initiated with 06 reset (logic 

low) a WAIT is still generated The internal timer in U18 will 
count to 2 which will clear the WAIT state This allows the WAIT 
to occur only during tt,e OUT instruction to prevent violating any 

Dynamic RAM parameters 

NOTE: This automatic WAIT will cause a 5-1 µsec wail each 

lime an out to Drive Select Latch is performed 

Hardware 140 



Clock Generation Logic 

A 16 MHz crystal oscillator and a Gate Array 4 4 (U18) are used 
to generate the clock signals required by the FDC board The 6 
MHz oscillator is implemented internal to U18 and a quartz 
crystal (Y2) The output of the oscillator is divided by 2 to gen
erate an 8 MHz clock This is used by the FDC 1773 for all in
ternal liming and data separation U 18 further divides the 16 
MHz clock to drive the watchdog timer circuit 

Disk Bus Output Drivers 

High current open collector drivers U 15 and U34 are used to 
buffer the output signals from the FDC circuit to the disk drives 

Write Precompensation and Write Data Pulse Shap
ing Logic 

All Write Precompensalion is generated internal lo the FDC 
chip 1773 (U17) Write Precompensation is enabled when 
W6 goes high and Write Precompensalion is enabled from 
software This signal is multiplexed with ROY by W6 is fed 
into pin 20 of U17 Write Data is output pin 22 of U17 and is 
shaped by a one-shot ( 1 /2 of U56) which stretches the data 
pulses to approximately 500 nsec 

Hardware 14 1 



Floppy Disk Controller Chip 

Tha 177'J is an MOS LSI device •;;hich performs the functions 
of a floppy disk formallerlcontroller in a single chip implemen
tation The following port addresses are assigned to the internal 
registers of the 1773 FDC chip: 

Port No, 

F0H 
F1H 
F2H 
F3H 

Function 
Command/Status Register 
Track Register 
Sector Register 
Data Register 

4.2.16 RS-232-C Circuit 

RS-232C Technical Description 

The RS-232C circuit for the Model 4P computer supports 
asynchronous serial transmissions and conforms to the EIA 
RS-232C standards al the input-output interface connector 
(J4) The heart of the circuit is the TR1865 Asynchronous 
llca .. e;vcr,Tr2i;-1:;;;;it~.:, U88 l! p.:;-!;:::;;,',G !h::: j::;8 ~! S8r!'.'0rting 

the parallel byte data from the CPU to a serial data stream 
including start, stop, and parity bits For a more detailed de
scription of how this LSI circuit pertorms these functions, re

fer to the TR1865 data sheets and application notes The 
transmit and receive clock rates that the TR1865 needs are 
supplied by the Baud Rate Generator U73 (BR1943) This 
circuit takes the 5 0688 MHz supplied by the system liming 
circuit and the programmed information received from the 
CPU over the data bus and divides the basic clock rate to 
provide two clocks The rates available from the BRG go 
from 50 Baud to 19200 Baud See the BAG table for the 
complete list 

BAG Programming Table 

Transmit/ 
Receive Supported 

Nibble Baud 16X by 
Loaded Rate Clock SETCOM 

OH 50 0 8 kHz Yes 

1H 75 1 2 kHz Yes 
2H 110 1 76 kHz Yes 

3H 134 5 2 1523 kHz Yes 
4H 150 2 4 kHz Yes 
SH 300 4 8 kHz Yes 

6H 600 9 6 kHz Yes 
7H 1200 19 2 kHz Yes 
BH 1800 28 8 kHz Yes 

9H 2000 32 081 kHz Yes 

AH 2400 38 4 kHz Yes 
BH 3600 57 6 kHz Yes 

CH 4800 76 8 kHz Yes 
DH 7200 1152kHz Yes 
FH ~oOO 153 6 kHz Yes 

FH 19200 307 2 kHz Yes 

The RS·232C circuit is port mapped and the ports used are EB 
to EB Following is a description of each port on both input and 
output 

Port Input Output 

EB Modem status Master Reset, enables UART 
control register load 

EA UART status UART control register load and 
modem control 

E9 Nol Used Baud rate register load enable 
bit 

EB Receiver Holding Transmitter Holding 

register register 

Interrupts are supported in the RS-232C circuit by the Interrupt 
mask register and the Status register internal to GA 4 5 (U31) 
which allow the CPU to see which kind of interrupt has oc

curred Interrupts can be generated on receiver data register 
full, transmiller register empty, and any one of the errors- par
ity, framing, or data overrun This allows a minimum of CPU 
overhead in transferring data to or from the UART The interrupt 
mask register is port E0 (write) and the interrupt status register 
is port E0 (read) Refer to the 10 Port description for a full break
down of all interrupts and their bit positions 

Hardware 142 



All Model I, 111, and 4 software written for the RS-232-C intertace 
is compatible with the Model 4P RS-232-C circuit, provided the 
software does not use the sense switches to configure the in
terface The programmer can get around this problem by di· 
rectly programming the BRG and UART for the desired 
configuration or by using the SETCOM command of the disk 
operating system to configure the interface The TRS-80 RS-
232C lntertace hardware manual has a good discussion of the 
RS·232C standard and specific programming examples (Cat
alog Number 26-1145) 

Pinout Listing 

The following list is a pinout description of the DB-25 connector 
(P1) 

Pin No. Signal 
1 PGND (Protective Ground) 
2 TD (Transmit Data) 
3 RD (Receive Data) 
4 RTS (Request to Send) 
5 CTS (Clear To Send) 
6 DSR (Data Set Ready) 
7 SGND (Signal Ground) 
8 CD (Carrier Detect) 

19 SRTS (Spare Request to Send) 
20 DTR (Data Terminal Ready) 
22 RI (Ring Indicate) 

Hardware 143 



Model 4P Gate Array 
1/0 Pin Assignments 

J1 J2 J3 

Pin Signal Pin Signal Pin Signal 
No. No. No. 

1. DATA STROBE 1 XD0 1 XD0 
2 .. GND 2 GND 2 GND 
3 PD0 3 XD1 3 XD1 
4, GND 4 GND 4 GND 
5 PD1 5 XD2 5 XD2 
6 GND 6 GND 6 GND 
7 PD2 7 XD3 7 XD3 
8 GND 8, GND 8 GND 
9, PD3 9, XD4 9 XD4 

10 GND 10 GND 10 GND 
11 PD4 11 XD5 11 XD5 
12. GND 12 GND 12 GND 
13 PD5 13 XD6 13, XD6 
14 GND 14 GND 14, GND 
15. PD6 15 XD7 15 XD7 
16 GND 16 GND 16 GND 
17 PD7 17 XA0 17 XA0 
➔ n G~~D 18 GMO ~e GMD 
19 NIA 19 XA1 19 XA1 
20 GND 20 GND 20 GND 
21. BUSY 21 XA2 21 XA2 
22 GND 22 GND 22 GND 
23, OUTPAPER 23 XA3 23 XA3 
24, GND 24 GND 24 GND 
25 UNIT SELECT 25 XA4 25 XA4 
26, NC 26 GND 26. GND 
27, GND 27 XA5 27 XA5 
28 FAULT 28 GND 28 GND 
29 NIA 29 XA6 29 XA6 
30, NIA 30 GND 30 GND 
31 NC 31 XA7 31, XA7 
32, NIA 32 GND 32 GND 
33, NC 33 XIN' 33 XIN' 
34 GND 34 GND 34 GND 
35 35 XOUT' 35 xour 
36 36 GND 36 GND 
37 37 XRESET' 37 XRESET' 
38, 38 GND 38 GND 
39, 39 IOBUSINT' 39 IOBUSINT' 
40 40 GND 40 GND 
41 41 IOBUSWAIT' 41 IOBUSWAIT' 
42 42 GND 42 GND 
43 43 EXTIOSEL' 43 EXTIOSEL' 
44 44 GND 44 GND 
45, 45 NC 45 NC 
46 46 GND 46 GND 
47, 47 XMI' 47 XMI' 
48, 48 GND 48 GND 
49 49 XIOREQ' 49 XIOREQ' 
50 50 GND 50, GND 

Hardware 144 



J4 J5 J7 Jg 

Pin Signal Pin Signal Pin Signal Pin Signal 
No. No. No. No. 

1 PGND L GND 1 DO 1. GND 
2 TD 2 2 D1 2 VOUT 
3 RD 3 GND 3 D2 3 GND 
4 CTS 4 4 D3 4 VERTSYNC' 
5 DSR 5 GND 5 D4 5. GND 
6 CD 6. 6 D5 6 HORZSYNC 
7. SGND 7 GND 7. D6 7 
8 CD 8 DIP" 8 D7 8 
9 9 GND 9 GEN' 9 

10 10 DS0' 10 DCLK 10 
11 11 GND 11 AO 11 
12 12 Ds1· 12 A1 12 
13 13 GND 13 A2 13 
14 14 14. J 14 
15 15 GND 15 GRAFVID 15 
16 16. MOTORON' 16 ENGRAF 16 
17 17 GND 17 DISPEN 17 
18 18 DIR' 18 VSYNC 18 
19 SRTS 19 GND 19 HSYNC 19 
20 DTR 20 STEP' 20 RESET' 20 
21 21 GND 21 WAIT' 21 
22 RI 22 wD· 22. H 22 
23 23 GND 23 I 23 
24. 24 WG' 24. IN' 24 
25 25 GND 25 GND 25 
26 26 DTRK0' 26 +5V 26 
27 27 GND 27 27 
28 28 DWPRT' 28. CL166• 28 
29 29 GND 29 GND 29 
30 30 DRRD• 30 +5V 30 
31 31 GND 31 GND 31 
32 32 SDSEL 32. +5V 32 
33 33. GND 33 GND 33 
34 34 34 +5V 34 

Hardware 145 





SECTION V 

CHIP SPECIFICATIONS 

Hardware 147 





CHIP SPECIFICATIONS 

4 4P 4 GATE ARRAY 4P GATE ARRAY 

Motorola Motorola Motorola Motorola 

MC 6835 MC 6835 MC 6835 MC 6835 

Western Digital Western Digital Western Digital 

BR 1943 BR 1943 BR 1943 

(BR 1941 L) 

FD 1793 TR 1865 TR 1865 

(WD 179X) 

FDC 9216 WD 1773 WD 1773 

TR 1865 

WD 1943-00 MATRA MATRA 

MMI MMI Timing A (4. 1. 1) Timing A. (4.1.1) 

PAL 16RGA (166) PAL 16RGA ST. Address A. (4.2.0) Address A. (4.2.0) 

PAL 10L8 (208) PAL 10L8 VT Video A (4.3.0) Video A. (4.30) 

PAL 1 0L8 C.T. 

PAL 16L8 (268) PAL 16L8 MeMep VTI VTI 

PAL 16L8 (368) PAL 16L8 Page Mep FDC A. (440) FDC A. (4.4.0) 

RS-232 A (4.5.0) RS-232 A. (45 0) 

Zilog Zilog Zilog Zilog 

280 A 280 A 280 A 280 A 

Hardware 149 





ARRAY#: 4.1.1 

CIRCUIT NAME: System Timing 

NO. OF PINS: 24 

MAX. CLOCK FREQ.: 20.2752 MHz 

OPER TEMP.: f/J° C to 70° C 

OPERATING VOLTAGE & RANGE: 5 V ± 5% 

Hardware 151 



20.2752_L 
MHZ c::::i 

f 1 PVC'T'IIT T _ ....... ~ .......... -... ....., 

1.2672MHz 

G 
PLL 12.672MHZ 

r-1564 

1.2672MHz 

FAST -

~64* -. 
MODSEL : 

MM -

• 
16 

l 

10 

i 

--

t-------- PCLK 
-

-. 
. 

-.. 
. 
-. 

-.. 
-
--

RS232CLK 

SHIFT* 
XADR7* 
CRTCLK 
LOADS* 
DDT* 
LOAD* 
DCLK 

H 

I 
J 

24 PIN CHIP 

Hardware 152 



XTAL.0" CD V @ vcc 

XTALl 0 @ PCLK 

l.2Ml6 G) @ RS232CLK 

12M 0 @ SHIFT* 

1. 2M.L0' 0 @ XADR7* 

FAST 0 @ CRTCLK 

8,0'64 * (j) 4 .1.1 @ LOADS* 

MODSEL ® @ DOT* 

MA0" 0 @ LOAD* 

N.C. @ @ DCLK 

J @ ~H 
GND @ @I 

Hardware 153 



SYSTEM TIMING SPECS 

NUivi6CR PAnA1v1t: 1 en MIN" TYP. r.1/.\X. UN!TS 

20M Cycle Time 49.3 ns 

2 20M Pulse Width (High) 20 11S 

3 20M Pulse Width {Low) 20 ns 

4 10M Cycle Time 98.6 ns 

5 10M Pulse Width (High) 45 40 ns 

6 10M Pulse Width (Low) 45 40 ns 

7 RS232CLI< Cycle Time 197 2 ns 

8 RS232CLK Pulse Width (High) 92 ns 

9 RS232CI< Pulse Width (Low) 92 ns 

10 PCLI< • (Fast) Cycle Time 246.6 ns 

11 PCLI<' (Fast) Pulse Width (High) 110 ns 

12 PCLK• (Fast) Pulse Width (Low) 110 ns 

13 PCLK • (!Fast) Cycle Time 493.2 ns 

14 PCLK • (/Fast) Pulse Width (High) 180 ns 

15 PCLK • (!Fast) Pulse Width (Low) 180 ns 
16 PCLI< • Rise Time 13 ns 

17 PCLK • Fall Time 13 ns 

DC CHARACTERISTICS (ALL PINS) 

Input Voltage Level (High) 20 V 
Input Voltage Level (Low) 8 V 
Output Voltage Level (High) 28 3.5 V 
Output Voltage Level (Low) 35 5 V 

(ALL PINS EXCEPT CRTCLK OUTPUT) 

Input Current Level (High) 40 µa 
Input Current Level {Low) -1 6 ma 
Output Current Level (High) -160 µa 
Output Current Level (Low) 3.2 ma 

(CRTCLK OUTPUT) 

Output Current Level (High) -400 µa 
Output Current Level (Low) 8 ma 

Hardware 154 



I 
Ill 
a. 
=E 
Ill 
cil 
01 
01 

2,0'M 

lOM* 

RS232CLK* 

I 0) · I t:::©---+--®----l 
_J I I I I I l~-~L 

PCLK (FASTl 

FCLK• (FAST( 1 r ~ I~ 
@---1 17 I--

PCLK (/FAST l 

f.. 

PCLK* (/FAST) r . \ 
@ I ~ •I 

SYSTEM TIMING 



VIDEO TIMING SPECS 

10.1376 MHz 12.672 MHz 

NUMBER PARAMETER MIN TYP MAX MIN. TYP. MAX UNITS 

1 VCLK Cycle Time 98 6 78 9 ns 
2 VCLI< Pulse Width (High) 40 30 ns 
3 VCLK Pulse Width (Low) 40 30 ns 
4 DCLI< Cycle Time 98 6 78 9 ns 

DCLK Pulse Width (High) 40 30 ns 
6 DCLK Pulse Width (Low) 40 30 ns 

DOT Cycle Time 98.6 78.9 ns 
8 DOT Pulse Width (High) 40 30 
9 DOT Pulse Width ( Low) 40 30 ns 

10 DCLK t to DOT t ns 
11 DCLI< tto H, I, J it 27 27 ns 
12 H Cycle Time 197 2 157 8 ns 
13 H Pulse Width (High) 90 70 ns 
14 H Pulse Width ( Low) 90 70 ns 
15 I Cycle Time 394 4 315 6 ns 
16 I Pulse Width (High) 190 150 ns 
17 I Pulse Width ( Low) 190 150 
18 J Cycle Time 788 8 631 2 ns 
19 J Pulse Width (High) 385 305 ns 
20 J Pulse Width ( Low) 385 305 
21 SH I FT Cycle Time 

(64x16 &80x24 Mode) 98.6 78.9 ns 
(32x16 & 40x24 Mode) 197 2 157 8 ns 

22 SHIFT Pulse Width (Low) 30 30 ns 
23 SHIFT t to LOADS t 0 27' 0 27' ns 
24 LOADS I to SHIFT) 50' 50' ns 
25 LOADS Pulse Width (Low) 70 98 6 70 78.9 ns 
26 LOADS 1 to SH I FT t 50' 50' ns 
27 LOADS Cycle Time 

(64x16 & 80x24 Mode) 788.8 631 2 ns 
(32x16 & 40x24 Mode) 1577 6 1262.4 ns 

28 SHIFT I to LOAD t 5 
29 LOAD Pulse Width (Low) 40 30 ns 
30 LOAD Cycle Time 

(64x16 & 80x24 Mode) 788.8 631 2 ns 
(32x16 &40x24 Mode) 1577.6 1262 4 ns 

31 LOAD t to CRTCLI< I 0 27 0 27 ns 
32 CRTCLI< Cycle Time 788 8 631 2 ns 
33 CRTCLK Pulse Width (High) 385 305 ns 
34 CRTCLK Pulse Width (Low) 385 305 ns 
35 CRTCLK tlto XADR7 11 5 ns 
36 XADR7 Cycle Time 788 8 631.2 ns 
37 XADR7 Pulse Width (High) 385 305 ns 
38 XADR7 Pulse Width (Low) 385 305 ns 

Hardware 156 



I 
"' a. 
~ 

'" 0, 

"" 

VCLK 
10. 1376MHz 

DCLK 

DOT* 

H 

I 

J 

MA.0' 

SHIFT* 

LOADS* 

LOAD* 

CRTCLK 

XADR7 * 

r-J2,,~ ~ 

-----.1 ~~) r @ h c;t •1 9, 

\-7 '1';..z1 -- ' t-------------'27 

,\--11-------{321--------·~------, 

~--------i.36,l---------+------i37l-----f-----{381---......... 

VIDEO TIMING 

64 X 16 MODE 
80 X 24 MODE 



I 

"' a. 
:;; 
"' 
'" en 
()) 

VCLK 
10. l376MHZ 

DCLK 

DOT* 

H 

I 

J 

MA,0' 

SHH'T* 

LOADS* 

LOAD* 

CRTCLK 

XADR7* 

I 

~--- --=--=~ r, - I 

0 

VIDEO TIMING 

32 X 16 MODE 
40 X 24 MODE 

r 



4.1 

MAX. 
PIN SIGNAL CAPACITANCE 

23 PCLK 35 pf 

22 RS232CK 105 pf 

21 SHIFT* 35 pf 

20 XADR7* 35 pf 

19 CRTCLK 35 pf 

18 LOADS* 35 pf 

17 DOT* 35 pf 

16 LOAD* 35 pf 

15 DCLK 35 pf 

14 H 35 pf 

13 35 pf 

11 ,J 35 pf 

Hardware 159 



ARRAY#: 4.2.1 

CIRCUIT NAME: Address Decode 

NO. OF PINS: 40 

MAX. CLOCK FREQ.: 4 MHz 

OPER. TEMP.: 0° C to 70° C 

OPERATING VOLTAGE & RANGE: 5 ± 5% 

Hardware 160 



MI 
IOREQ 

RD 
WR 

MREQ 
RFSH 

DESPAGE 
ENPAGE 

SRCPAGE 
SELl 
SEL.0' 

Al5 
Al4 
Al3 
Al2 
All 
Al,,0' 

LPADD 

SIXTN 
MOD4P 

-
. 
--

-

-
-

-

-
:;:-

-
-
. 

+sv 

T 

.1. 
4,0' PINS USED 

4-6 PIN CHIP 

4. 2 . .0" 

ADDRESS DECODE 

-

-
-

-

-
-

--

-
-
-

Hardware 161 

IN* 
OUT* 
MRD* 
MWR* 

RASEN.0'* 
RASENl* 
MAPA15 
RAMBUSDIR 
RAMBUS EN* 
RAMRDEN/MCYCEN (RAMRDMCYC) 
RAMWREN/ROMB* 

BUSDIR* 
BUSEN* 

VIDEO* 
KEYBD* 
ROMC E* /ROMC * 

LPRQ* 

ROM*/ROMA* 
(I/0) 



Ml CD V @vEC 

IOREQ 0 @) IN* 

RD G) @ OUT* 

WR G) @ MRD* 

MREQ 0 @ MOD4P 

RFSH ~ M MWR* 
~ '-7 

Al5 (j) @ RASEN..0'* 

Al4 ® @ RASENI* 

Al3 ® @ MAPAl.5 

Al2 @ 4.2.1 @ RAMBUSDIR 

All @ @ RAMBUSEN* 

Al0" @ @ RAMRDEN/MCYCEN 

LPADD @ @ RAMWREN/ROMB* 

LPRQ* @ @ BUSDIR* 

DESPAGE@ @ BUSEN* 

ENPAGE @ @ SIX'rN 

SRCPAGE Q) @ VIDEO* 

SELl @ @KEYBD* 

SELZ @ @ ROMCE*/ROMC* 

GND ® 6J) ROM*/ROMA* 
-.....,/ 

Hardware 162 



SIGNAL NAME MODEL A MODE MODEL4 MODE 

MDD4P "I"= +SV "0" GND 

Ml Ml Ml 
!OREO !OREO !OREO 
RD RD RD 
WR WR WR 
MREO MREO !OREO 
RFSH RFSH RFSH 
DESPAGE DESPAGE DESPAGE 
ENPAGE ENPAGE ENPAGE 
SRCPAGE SRCPAGE SRCPAGE 
SEL 1 SEL1 SELi 
SEL0 SEL0 SEL0 
A15 A15 A15 
A14 A14 A14 
A13 A13 A13 
A12 A12 A12 
All All All 
A10 A10 A10 
LPADD LPADD LPADD 
SIXTN SIXTN SIXTN 

IN* IN* 0 IN* 0 
OUT* OUT* 0 OUT* 0 
MRD* MRD* 0 MRD* 0 
MWR* MWR* 0 MWR* 0 
RASEN0* RASEN0* 0 RASEN0* 0 
RASENl * RASENl* 0 RASENl* 0 
MAPA15 MAPA15 0 MAPA15 0 
RAMBUSDIR RAMBUSDIR 0 RAMBUSDIR 0 
RAMBUSEN* RAMBUSEN* 0 RAMBUSEN* 0 
(RAMRDMCYC) RAM RDEN/MCYCEN RAMRDEN 0 MCYCEN 0 
RAM WREN/ROMB* RAMWREN 0 ROMB* 0 
BUSDIR* BUSDIR* 0 BUSDI R* 0 
BUSEN* BUSEN4P* 0 DATACNT* 0 
VIDEO* VIDE04P* 0 VIDE04* 0 
l<EYBD* I< EYBD4P* 0 l<EYBD4 * 0 
ROMCE*/ROMC* ROMCE* 0 ROMC* 0 
LPRO* LPRO* 0 LPRO* 0 
ROM*/ROMA* ROM* ROMA* 0 

INPUT 
0 = OUTPUT 

Hardware 163 



SPECS 

PARAMETER MIN. TYP MAX. UNITS 

1 IOREO U • RD H to IN H 35 ns 
2 IOREO U * WR U to OUT -It 35 ns 

3 RD U to MRD -It 35 ns 

4 WR H to MWR -It 35 ns 

5 A15 U to RASEN0 U 50 ns 

6 A15 H to RASEN1 U 50 ns 
7 A15 U to MAPA15 U 50 ns 

8 RD ttto RAM8USDIR -It 35 ns 
9 MREO H to RAM8USEN H 35 ns 

10 A15-A10 U to RAMRDMCYC tt 50 ns 
11 A15-A14 tt to RAMWREN ti 50 ns 

12 MREO tt to ROMS -It 35 ns 
13 IOREO ti to 8USDIR -It 35 ns 
14 RD tt to 8USDIR H 35 ns 
15 MREO tt to 8USEN tt 50 ns 
16 iviREQ ii' lU ViDEO tt 25 no 

17 MREQ U to l<EY8D -It 35 ns 
18 MREQ tt to ROMCE -It 35 ns 

19 MREO t.), to ROMC -It 35 ns 

20 MREO tt to LPRO H 35 ns 
21 MREO tt to ROMA -It 35 ns 
22 PCLK t t to PCLI< t t 110 123 ns 
23 PCLK Cycle Time 246 ns 
24 PCLK tto M1 t 106 ns 
25 PCLI< t to MREQ t 91 ns 
26 A10-A15 Hto MREO t 50 ns 
27 PCLK !to RD t 101 ns 
28 PCLI< tto A10-A15 H 128 ns 
29 PCLK t to A10-A15 t t 128 ns 
30 PCLK t to M1 t 136 ns 
31 PCLK t to MREO t 91 ns 
32 MREO ! to MREQ t 110 ns 
33 PCLK tto RD+ 91 ns 
34 PCLK ho RFSH t 136 ns 
35 R FSH t t to RAS EN 0 or RASEN1 t t 35 ns 
36 PCLK + to MREQ ( 91 ns 
37 M REO Pulse Width (High) 220 126 ns 
38 PCLK ho RFSH + 
39 A1-A9 tho LPADD t! 30 ns 
40 PCLK !to WR t+ 86 ns 
41 PCLK t to RD t 91 ns 
42 Control Lines H to Affected Signals t + 35 ns 
43 A0-A15 U to IOREO t 200 ns 
44 PCLK t to IOREQ t 81 ns 
45 PCLI< ho RD t 91 ns 
46 PCLI< ttoWR t 71 ns 

Hardware 164 



I 

"' a. 
::;; 
"' ro 
;;; 
(JJ 

Tl 

PCLK* - ~~ -

AlB'-Al j 

r&t 
Ml ~ r-@ -
MREQ 

RD 

RFSH 

MRD -
RASEN.0' 

RASENl -
MAPA15 

RAMBUSD IR 

>I* RAMBUSE 

(RAMRDM 
RAMRDEN 
MCYCEN 

::YC l _., 

I 

BUSDlR* 

BUSEN* 

KRY Rn*. VIDEO* 
ROMCE*, LPRQ 

~ 

-

~ 
l 

1-(7) 
A 
I -< 

-
~ 
I 
I -< 

-
-

ROMA* , ROMB *, ROMC * 

T2 

I I 
123' 

1-(3) 

4s) 

~ 

14 

_J--Qj) 
l 

r-(16,17,18,20) 

l 

Ml CYCLE 

T3 T4 

I I 
-(i9j-,- (28}- f-

)l 
_., '-[--Q9) 

i 
(3i)-... -,8)- _., .r-Q§) 

I - -~ 37 I 

I 

- •-{34) - ~ 

--G) ---
_., d8) 

-< ~ 7 ~ 
1- _J--(z) 

- ~ 
_., ---{ 9) 

i--- r@ 
_,. 1-- 14) 

_.,. I l--{15) 

I - ~16,17,18,20) 



I 

"' a. 
~ 
m 
"' "' 

PCLK* 

AL0'-Al5 

LPADD 

MREQ 

RD 

WR 

MRD* 

MWR* 

Tl 

READ OR WRITE CYCLE 

T2 T3 

1-------{2 3 

40 40 

4 

RASEN.ef', RASENl, MAPA15, RAMBUSDIR, RAMBUSEN*, RAMRDMCYC, BUSDIR*, BlJSEN*, 
VIDEO*, KEYBD*, ROMCE*, LPRQ, ROMA*, ROMB*, ROMC* - Refer to Ml Cyc:_e 

CONTROL LINES 

DES PAGE, EN PAGE, ;;r; ;;} 
~::::"'· SSCl, (,; F (•C F 
RASENO, RASENl, 
MAPA15, RAMBUSDIR, 
RAMBUSEN*, RAMRDMCYC, 
RAMWREN, ROMB *, 
BOSEN*, VIDEO*, 
KEYBD*, ROMCE*, 
ROMC*, LPRQ*, 
ROMA* 



1/0 CYCLE 

T2 TW T3 

PCLK* ~~ t ~ 
Al'.f-Al5 

I 
IOREQ 

Ill a. 
:E RD 
Ill 
io 
tn WR 
--., 

IN* 
E • 

OUT* 



DC CHARACTERISTICS (ALL PINS) 0° - 70° C 

PARAMETER MIN. TYP. MAK UNITS 

Input Voltage Level (High) 2.0 V 

Input Voltage Level (Low) 8 V 

Output Voltage Level (High) 2 7 3.5 V 

Output Voltage Level (Low) .35 .5 V 

(ALL PINS EXCEPT OUT*, RAMRDEN/MCYCEN) 

Input Current Level (High) 20 µa 

ln0ut Ci 1nPnt I P11PI { I n,111) -~ lllcl 

Output Current Level (High) -200 µa 

Output Current Level ( Low) 4 ma 

(OUT*, RAMRDEN/MCYCEN) 

Output Current Level (High) -400 µa 

Output Current Level (Low) 8 ma 

Hardware 168 



MAX. 
PIN SIGNAL CAPACITANCE 

39 IN* 35 pf 

38 OUT* 35 pf 

37 MRD* 35 pf 

35 MWR* 128 pf 

34 RASEN0* 35 pf 

33 RASENl* 35 pf 

32 MAPA15 35 pf 

31 RAMBUSDIR 35 pf 

30 RAMBUSEN* 35 pf 

29 RAMRDEN/MCYCEN 35 pf 

28 RAMWREN/ROMB* 35 pf 

27 BUSDI R* 35 pf 

26 BUSEN* 35 pf 

24 VIDEO* 35 pf 

23 KEYBD* 35 pf 

22 ROMCE* /ROMC* 35 pf 

(OUTPUT) 21 ROMA* 35 pf 

14 LPRO* 35 pf 

Hardware 169 



AR RAY #: 4.3.0 

CIRCUIT I\IAME: \/irlPn S11rrnrt 

NO. OF PINS: 40 

MAX. CLOCK FREQ.: 12.672 MHz 

OPER. TEMP.: 0° C to 70° C 

OPERATING VOLTAGE& RANGE: 5± 5% 

Hardware 170 



SRDG' 

SRO 1 _illllD"'-----1 

SRD2 
SRD3 _111111=----f 

SRD 4 _IIIIID-----1 

SRDS 

SRD6 ~11111oo-----1 

SRD7 _11111=-----1 

DIS PEN ---------1 

RA211111i1D-----f 

RA3.-----f 

DLYCHAR 

DLYCHAR* ◄------~ 
CGA3 ◄------~ 
CGA4 

CGA5 -
CGA6 

CGA7 -
CGA8 ~ 

CGA9 
CG Al.0" ...,-1111t-----1 

+sv 

VOUT* 

t---◄-• INVERSE 

i----...,.- ENALTSET 

i----◄-- LOAD* 

LOADS* 

t---....a111111--:: SHIFT* 

t---.....,.- ENGRAF 

----- GRAFVID 
i------- CLl 6 6 * 

1----11111111- CGD,0' 

CGDl 

t----a- CGD 2 

t----a- CGD 3 

t---""""lillll~ CGD4 

i----....... - CGD 5 
t-----CIIIIIIIII: CGD 6 
t----...,..- CGD 7 

39 PINS USED 

40 PIN CHIP 

4. 3 • .0' 

VIDEO SUPPORT 

Hardware 171 



CGA7 l V 40 +5V 

CGA8 2 39 CGA6 

CGA9 3 38 CGA5 

CGAL0'. 4 37 CGA4 

SRD7 5 36 CGA3 

SRD6 6 3.5 RA3 

SRD5 7 34 RA2 

SRD4 8 33 CGD7 

SRD3 9 32 CGU6 

SRD2 10 31 CGD5 

SRDl 11 30 CGD4 

SRD0 12 29 CGD3 

DLYCHAR* 13 28 CGD2 

DLYCHAR 14 27 CGDl 

DISPEN 15 26 CGD0 

CL166 * 16 25 INVERSE 

ENGRAF 17 24 ENALTSET 

GRAFVID 18 23 LOAD* 

VOUT * 19 22 LOADS* 

GND 20 21 SHIFT* 

Hardware 172 



SPECS 

PARAMETER MIN. TYP. MAK UNITS 

1·· SRD0-SRD7 tho LOAD t 61 ns 
2· Inputs D0-D7 of LS273 t t to LOAD t 20 ns 

3 LOAD t to CGA3-CGA 10 t .j, 0 60 ns 
4 RA2, RA3 t .j, to Outputs of LS153 ti 0 38 ns 

5 Inputs CGA3-CGA 10 of LS153 t .j, to Outputs t .j, i,l 30 ns 

6 D L VG RAPH IC .j, to Outputs of LS244 1 .j, i,l 30 ns 
7 DL YGRAPHIC t to Outputs of LS244 Tristate 0 30 ns 

8 ENAL TSET t .j, to CGA9 t .j, 0 35 ns 

9 INVERSE t .j, to Inputs D7 of LS273 t .j, i,l 35 ns 

10 INVERSE t-J, to INVDISPEN, CHAR t-J, 0 41,l ns 
11 INVERSE!holnputto51 U i,l 20 ns 

12 SRD6 H to CHAR U 0 40 ns 

13 DISPEN t-J, to Input Di,lof LS175 t-J, 0 20 ns 
14 DISPEN H to INVDISPEN 1-J, 0 40 ns 
15 ENGRAF tho INVDISPEN j.j, 0 40 ns 

16 ENG RAF t tto Inputs of 51 j.j, 0 20 ns 

17 GRAFVID Hto lnputof51 t-J, i,l 5 ns 
20** CGD0-CGD7 t-J, to LOADS .j, & SHIFT t 100 ns 
21 RA3 Hto DLYBLANI< t-J, 0 27 50 ns 
22 LOAD, t to DL YB LANI< H i,l 27 50 ns 
23** LOADS t to SH I FT t 50 ns 
24* SHFT/LD j, to SHIFT t 30 ns 
25 CL166thoOHH 0 30 ns 
26* LOAD t to SHIFT t ± 5 ns 
271 LOAD 1 to VIDE02 H ~ SHIFT t to VIDEOl H ± 5 ns 

28 GRAFVID t-J, to VIDE02 t-J, i,l 15 ns 
29 VIDE02 t.j,, VIDEOl Uta VOUT H 0 20 ns 

30 ENG RAF H to VIDE02 H 0 15 ns 
31 DL YCHAR* t to CGD0-CGD7 Tristate 150 ns 
32 CRTCLK .j, to DISPEN 300 ns 

1 The delay from LOAD t to VI D EO2 t-J, should equal the delay from SH I FT t to VIDEO 1 H 

• Specs required for TLL components-can be changed to meet the setup & hold time specs of array logic, 

**Specs provided are for reference, timing is from external logic, 

Hardware 173 



:c 
Ill 

~ 
Ill 

"' ~ 

CRTCLK 

SRA0'-SRA1ZCRTCADDX 

SRD,(J'-SRD7 

LOAD* 

XcRTCAooX 

L_ 

XcRTcAooX XcRTc AooX XcR'rc r..ooX ~ 

CGA3-CGA1Z ___Jt=~~~~===x=======e========~;;;;~==~;mizii~===;~~ 
CGD,,--CGD7 '/JXXXX'fJ.~XXXXXftJX .'t:1:/JXXXXl ~XXXli~'/J:f.. 

SHIFT* 

SHFT/LO 

INVDISPEN XXX'tJlJIJXIJXXJXX 

DLYL<VDISP 

DLYDLYINVDISP---------~ 

VIDEO 2 

VIDEO 1 

VOUT* 

DOT* OR DCLK 

\/OUT 

xxxJJxxxmxxxx XXX'/JJXXYJ:ffJJ!mX '[fJJJJ}) 'J.].I 

INVERSE VIDEO TIMING 



I 
O> 
a. 
:;; 
O> 
al 
:::; 
01 

CRTCLK 

SRD.0'-SRD7 

LOAD* 

CGA3-CGAljl' 

CGDil'-CGD7 

SHIFT* 

LOADS* 

DISPEN 

DLYDISPEN 

DLYBLANK 

SHFT/LD 

VIDEO 1 

t--
---t'~---J"'-....;.::..::...::..:::..:.i~~ XcRTC AooX XcRTC ;,'JDX XCRTC AooC 

xxxxxxxmx xx 

~J~~~II.L'L'COD;~ CL.J'._J'-l\__JI_J\_JLJI__J 

BLANKING 



I 
"' a. 
~ 
'" --., 
Ol 

CRTCLK 

SRA,Q"-SRAl.lf X X CRTC ADD X X CR'CC ADD X r= 
VALID VALID VALID 

SRDif-SRD7-4 ~ ~\---( XX) I ~ 

LOAD* 

CHAR ,xxxxxxxxxxxxmxxxxxxxxxxxxxxxxxxxxxxxx 

DLYCHAR* _____________________ ....J 

DLYGRAPHIC* 
(DLYCHAR) 

'1-Y:/JttJJ,XXXXXXXXX'/J-XXXXXXXXXXXX.(XXXXXXXK 'XXXXXXXXXXXXXXXXXXXXXXXXXXX 

cGDJl'-cGD 1-----x·=xx=xx=xx=xxx=xx=xx=xx=xx=xx=xx"'x~it--:-:v-AL"""r,,...D _D.,..,A'.r"""'f;.-lt-:,x=xx=xxx=xx=xd I ( ............................................. J,__ 

D~-D7 FROM ~1-------..J 1~----_::_::::::c:::.:::_...::.:.~-------, LS244 

SHIFT* 

SHFT/LO 

VIDEO 1 

DLYCHAR* & DLYGRAPHIC* CONTROL 



I 
w 

i 
w 
ro 
__, __, 

GRAFVID 

ENGRAF 

VIDE02 

VIDEO l 

CL166* 

VOUT* 

DOT* OR 
DCLK 

VOUT ] CJ D IT] D D CI\ D 
GRAFVID, ENGRAF, CL166*, VIDEOl 

RELATIONSHIP 

□ CJ D 



ENAL"TSE'I' 

CGAl,0' 

ENALTSET * CGA10 

Q6 
::c 
Ill a. 
:;; 

~ CGA9 ~-~~t I 
::. 
CD 

ENALTSET CGAl0 Q6 CGA9 

z $ Jo 0' 
JiJ $ I I 

JiJ I z z 
~ I I I 

I z z z 
I z I I 

I I ~ ff 
I I I J, 

ENALTSET CONTROL 



DC CHARACTERISTICS (ALL PINS) 0° - 70° C 

PARAMETER MIN. TYP. MAX. UNITS 

In put Voltage Level (High) 2.0 V 

Input Voltage Level (Low) .8 V 

Output Voltage Level (High) 2.7 3.5 V 

Output Voltage Level (Low) .35 .5 V 

Input Current Level (High) 20 µa 

Input Current Level (Low) -.4 ma 

Output Current Level (High) -200 µa 

Output Current Level (Low) 4 ma 

Hardware 179 



4.3 

MAX. 
PIN SIGNAL CAPACITANCE 

4 CGA10 35 pf 

3 CGA9 35 pf 

2 CGA8 35 pf 

CGA7 35 pf 

39 CGA6 35 pf 

38 CGA5 35 pf 

37 CGA4 35 pf 

36 CGA3 ::lb pt 

13 DL YCHAR* 35 pf 

14 DLYCHAR 35 pf 

19 VOUT* 35 pf 

Hardware 180 



AR RAY #: 4.4.0 

CIRCUIT NAME: Floppy Disk Support 

NO. OF PINS: 24 

MAX. CL.OCI< FREQ.: 8 MHz 

MAX. PROP. DELAY THROUGHPUT: 75 ns 

OPER. TEMP: 0° C to 70° C 

OPERATING VOLTAGE & RANGE: 5 V ± 5% 

Hardware 181 



DZ 
Dl 
D2 
D3 
D5 
D6 
D7 

RESET* 

WRNMI* 
RDNMI * 
DRVSEL* 

INTRQ 
DRQ 
WG 

-
--
~ 

-
--
-

--
--
-

-

-
-

4. 4 .-Rf 

+5V 
T24 

--
-

-
. - -

- -
-

XTAW 
_L 
c:::::J -,-

XTALl 

12 

- -

24 PIN CHIP 

FLOPPY DISK SUPPORT 

Hardware 182 

8MHZ 
ENP/RDY 

MOTORON 
EXTSEL 

NMI 

WAIT 

16MHZ 
XTAL 



INTRQ CD V @ vcc 
DRQ @ @ XTAL.if 

ENP/RDY Q) @ XTALl 

WG © @ MOTORON 

DO ® @ EXTSEL 

Dl @ @) NMI 

D2 (}) 4.4 @ WAIT 

D3 @ @ WRNMI* 

05 ® ~ RDNMI* 

D6 @ © DRVSEL* 

D7 © g 8MHZ 

GND @ © RESET* 

Hardware 183 



SPEC 
PARAMETER MIN TYP MAX UNITS 

Data Setup Time 560 ns 
Data Hold Time 50 ns 

3 Reset* Pulse Width 70 100 µs 

4 Reset* t to Wait or NM! t 75 ns 

5 WRNMI * t to 74LS74 Q's Outputs) t 75 ns 

6 DRVSEL * I to MOTORON t 75 ns 
*7 MOTORON Pulse Width (Low) 3 4 5 sec 

8 DRVSEL *) to WAIT t 75 ns 

9. DRVSEL *) to CLRWAIT t 500 1100 ns 
10 DRVSEL * t to WAITIMOUT t 1024 1050 µs 
11. DRVSEL* ho ENP/RDY tt 75 ns 
12 DRVSEL' I to EXTSEL H 75 ns 
13 INTRO tor ORO t to WAIT t 75 ns 
i4 ···---. -.-- • ,..,, ,..,,.,. ,..,.. ! 

'" ll\11 nu I UI unu I lU l...LnVVt-'d I 't' 

15 I NTRQ tor D RO ho WAITIMOUT t 75 ns 

16 8 MHZ Cycle Time 125 ns 
17 8 MHZ Pulse Width (Low) 50 62.5 ns 
18 8 MHZ Pulse Width (High) 50 62.5 ns 
19 WG H to ENP/RDY ti 75 ns 
20 RDNMI*) to Diil, D5·07 Valid 75 ns 
21 RDMMI* t to Diil, D5•D7 Tristate iil 75 ns 

* MOTORON Circuit Must Simulate a Retriggerable Monostable Multivibrator (74LS123) 

Hardware 184 



D,0'-D3,D5-D I )f 

1 1-(2) 

DRVSEL*, 
WRNMI* 

3 .I 

I 
RESET * 

' 1 
i.- 4)-.l 

WAIT l 
:c NMI 
Ol 

a. 
::; 
Ol 

74LS74 Q'S al 

®- I-

' 00 
01 ©- ? 1 

\---
MOTORON 

(.0- 1--{Llj--- --
WAIT 

9 
I f---(14}--

CLRWAIT 

WAITIMOUT 

1---i I Ml¼-0 
I 
I@- 1--

ENP/RDY 

Q3)-- -
EXTSEL 

INTRQ 



16MHZ 

8MHZ 

4MHZ 

2MHZ 

::c 
ll) 

a. 

~ 
:; 
ll) 

ii3 
WG ~ 

r Cl) 

ENP/RDY 

@j L \ ~ 

RDNMI* 

@--, 

~ D.0',D5-D7 
I F ~ yd =-:)t------f----__ 

D1-D4 TRI STATED 



CAPACITANCE LOAD 

OUTPUT CAPACITANCE MAX. 

D0 80 pf 

D5 80 pf 

D6 80 pf 

D7 80 pf 

8 MHZ 15 pf 

ENP/RDY 15 pf 

MOTORON 15 pf 

EXTSEL 15 pf 

NMI 15 pf 

WAIT 15 pf 

Hardware 187 



PARAMETER 

Input Voltage Level (High) 
Input Voltage Level (Low) 
Output Voltage Level (High) 
Output Voltage Level (Low) 

Input Current Level (High) 
Input Current Level (Low) 

Output Current Level (High) 
Output Current Level (Low) 

Output Current Level (High) 
Output Current Level (Low) 

Input Current Level (High) 
Input Current Level (Low) 
Output Current Level (High) 
Output Current Level (Low) 

DC CHARACTERISTICS 0° - 70° C 

(ALL PINS) 

MIN. 

2.0 

2.7 

TYP. 

3.5 
35 

(ALL PINS EXCEPT MOTORON & D0, D5-D7) 

-160 
3.2 

MOTORON 

-240 
4.8 

D0, D5-D7 

-280 
5.6 

Hardware 188 

MAX. UNITS 

V 

8 V 
V 

.5 V 

20 µa 
-4 rna 

µa 
rna 

µa 
rna 

20 µa 

-4 rna 
µa 
rna 



AR RAY #: 4.5.0 

CIRCUIT NAME: RS232 Support 

NO. OF PINS: 40 

OPER. TEMP.: 0° C to 70° C 

OPER. VOLTAGE: 5V± 5% 

Hardware 189 



vcc 

I --
AO 1 9 RTS 

--
Al 2 10 DTR 

--
RDINTSTATUS 3 7 SRTS 

WRINTMASKREG 4 8 ENTD 

RS232IN 5 21 OU'l'E8 

RS232OUT 6 38 OUTE9 

--
CTS 14 11 OUTEA 

-- ---
DSR 15 

4.5.0 
23 OUTEB 

- ---
CD 16 40 PIN 18 INEB 

-
RI 20 

- --
RD 13 37 IN'r 

PE 26 

FE 25 27 BDIJ' 

DE 24 28 BDl 

THRE 22 29 BD2 

DR 19 30 BD3 

RTCIN 36 31 BD4 

XINT 35 32 BD5 

-
WR 39 33 BD6 

N. c.__g 34 BD7 

1:J_ 

Hardware 190 



::t 
"' cl. 
:E 
"' al 

~ 

Input Voltage (High) 

Input Voltage (Low) 

Output Voltage (High) 

Output Voltage (Low) 

Input Current (High) 

Input Current (Low) 

Output Current (High) 

Output Current ( Low) 

D. C. CHARACTERISTICS 0° - 70° C 

MIN. 

V1H 2.0 

V1L 

VoH 2.7 

VoL 

l1H 

l1L 

loH (all except INT. INEB & BD) 120 
INT (O.C. or D.D.l 120 
BD BUS 280 
INEB 120 

loL (all except INT. INEB, & BD) -3.2 
INT, (0. C. or D.D.) -8.0 
BD BUS -5.6 
INEB -4.4 

TYP. MAX. UNITS 

V 

.8 V 

3.5 V 

.35 .5 V 

20 µa 

-.4 ma 

µa 

µa 

µa 

µa 

ma 
ma 
ma 

ma 



I 
ill a. 
::; 
ill 
m 
er, 

"' 

PROP, DELAY & TIMING IIIIIN. 

Data In* to BO Bus 

RS232 IN + to BO Bus 

BO Bus Set Up to WR t 75 

BO Bus Hold Time From WR t 

A0, A1 to INEB, OUTEB, OUTE9, OUTEA, OUTEB 

RS232IN, RS2320UT t to !NEB OUTE8, OUTE9, OUTEA, OUTEB 

WR t to OUTE8, OUTE9, OUTEA, OUTEB (WOULD LIKE 18) 

RS2320UT t to RTS, DTR, ENTD, SRTS 

PE, FE, DE, THRE, DR, RTCIN, XINT to INT+ 

All Delay In NSEC. 

*Data in is any of the following inputs: PE, FE, DE, THRE, DR, RTCIN, XINT, CTS, DSR. CD, RI & RD. 

CouT Max; 100 pf for BO Bus, INT, & !NEB; all others CouT Max; 50 pf. 

TYP. MAX. 

75 

75 

60 

75 

75 

32 

75 

75 



AO-Al J VALID 

t""'"- 'rl 
~ T2 

WRINTIMASKREG, 
RDINTSTATUS, 
RS232IN, ~R~S~2~3~2~o=u=T 

WR 

T4 T3 ~ 
BDBUS 
(OUT) 

TS 

T6 

BDBUS 
(IN) 

Tl3 

~,___ __ C_ 

.____I 

T7 

VALID 

~ 
~Tl2 

Tll Tl0 
{T9 

VALID 

r- rT14 
OUTXX I:: VALID C OUTXX 

Hardware 193 



MIN. TYP. MAX. 

t1 168 

t2 168 

t3 -34 0 

t4 -34 0 

t5 75 

ts 75 

t7 34 

ta 60 

tg 24 250 

t,o 24 250 

t11 75 

t12 75 

t13 75 

t14 32 (Need 18) 

All Timing in NSEC. 

Hardware 194 



Advance Information 

CRT CONTROLLER (CRTC) 

The MC6835 is a ROM based CRT Controller which interfaces an 
MPU system to a raster scan CRT display It is intended for use in MPU 
based controllers for CRT terminals in stand-alone or duster configura• 
tions The MC6835 supports two selectable mask programmed screen 
formats using the program select input (PROGl 

The CRTC is optimized for the hardware/software balance required 
for maximum flexibility Al! keyboard functions, reads. writes, cursor 
movements. scroll'lng, and editing are under processor control The 
mask programmed registers of the CRTC are programmed to control 
the video format and timing 

• Cost Effective ROM Based CRTC Which Supports Two Screen 
Formats 

• Useful in Monochrome or Color CRT Applications 

• Applications Include ··Glass-Teletype.•· Smart. Programmable. Intel
ligent CAT Terminals; Video Games; Information Displays 

• Alphanumeric, Semigraphic. and Full Graphic Capability 

• Timing May Be Generated for Almost Any Alphanumeric Screen 
Format, eg 80x24, 72x64.132x20 

e Single + 5 Volt Supply 

• M6800 Compatible Bus Interface 

• TTL-Compatible Inputs and Outputs 

• Start Address Register Provides Hardware Scroll (By Page, Line or 
Character) 

• Programmable Cursor Register Allows Control of Cursor Position 

• Refresh (Screen) Memory May Be Multiplexed Between the CRTC 
and the MPU Thus Removing the Requirements for Line Buffers or 
External OMA Devices 

• Mask Programmable Interlace or Non-Interlace Scan Modes 

• 14-Bit Refresh Address Allows Up to 16K of Refresh Memory 
for Use in Character or Semigraphic Displays 

• 5-Bit Row Address Allows up to 32 Scan-Line Character Blocks 

• By Utilizing Both the Refresh Addresses and the Row Addresses, 
a 512K Address Space is Available for Use in Graphics Systems 

• Refresh Addresses are Provided During Retrace. Allowing the CRTC 
to provide Row Addresses to Refresh Dynamic RAMs 

e Pin Compatible with the MC6845 The MC6845 May Be Used as a 
Prototype Part to Emulate the MC6835 

MAXIMUM RATINGS 
Rating Symbol Value Unit 

Supply Voltage Vee· -0.3 to + 7.0 

Input Voltage Vin" -0.3 to + 7.0 

Operating Temperature Range 
Me6835. MC68A35. MC68835 TA 0 \0 + 70 
MC6835C, Me68A35C, MC68835C -50 to + 85 

Storage Temperature Range Ts1g -5510+150 

"With respect to GND (V55) 

This documcmt cont,1ms mlormiltion on a new produc1 Spec1!1ca11on5 ,1nd ,ntorrna11on here,n 
ilw suti1ec1 to change w11hout not,ce 

V 
V 

oc 

oc 

MC6835 

MOS 
!HIGH-DENSITY, N-eHANNEL, 

SILICON-GATE DEPLETION LOAD) 

MASK PROGRAMMED 
CRT CONTROLLER 

(CRTC) 

L SUFFIX 
CERAMIC PACKAGE 

CASE 715 

S SUFFIX 
CERDIP PACKAGE 

CASE 734 

PLASTIC PACKAGE 
CASE 711 

PIN ASSIGNMENT 

CURSOR 

Vee 

©MOTOROLA INC 1984 

HS 

RAO 

RA! 

RA2 

RA3 

RA4 

DO 

01 

03 

D4 

05 

06 

07 



FIGURE 1 - TYPICAL CRT CONTROLLER APPLICATION 

f--t-------.-----------------AB 

f--t-------+-------------~------+OB Prirnarv Bus ~---~ 

CRTC 

HS vs 

THERMAL CHARACTERISTICS 

Thermal Resistance 
Plastic 
Cerd1p 
Ceramic 

Characteristic 

Memory 
Addresse~ 

Symbol 

OJA 

RECOMMENDED OPERATING CONDITIONS 
Characteristic Symbol Min 

Supply Voltage Vee 4.75 

Input low Voltage V1L -0.3 

lnput High Voltage V1H 2.0 

Value 

100 
60 
50 

Typ 

5.0 

Max 

5 25 

08 

Vee 

L,1\Ch 

ROM 
Character 
{;prnir<1to1 

Rating 

oc/W 

Unit 

V 

V 
V 

POWER CONSIDERATIONS 

The average chip-junction temperature T J in °C can be obtained from 

TJ=TA+IPo•0JAI 
Where· 

TA= Ambient T ernperature °C 

0 JA = Package Thermal Resistance Junction-to-Ambient, °C/W 

Po"' P1NT + PpoRT 
P!NT=lccxVcc, Watts - Chip Internal Power 
PpQRT = Port Power Dissipation. Watts - User Determined 

Curso1 

Video 
Ou1put 

Ttus device contains c1rcu1try 10 protect \hem• 
puts against damaye due 10 t11gh static volwges 
or electric fields: however 11 1s advised that nor· 
rnal precal1tIons be taken 10 avoid apphcat1on of 
any voltage h1gt1er 1han mnxtrnurn rated voltages 
to this h1gh-1mpedance circull For proper opera· 
1Ion 11Is recommended that Vm and Vaut be con 
sua1ned to the range V55( ::a Vm or V0u1ls Vee 
Relmb1l1ty of operation Is enhanced ii unused in• 

puts are ued to an appropriate logic vo\!age level 
(e g either Vss or Vee! 

111 

For most applications PpQRT<C P1NT and can be neglected PpQRT may become significant i! the device 1s configured to 
drive Darlington bases or sink LED loads 

An approximate relationship between Po and T J {if PPORT is neglected) 1s: 

Po= K - IT J + 273'CI 
Solving equations l and 2 for K gives 

K = Po•IT A+ 273°CI + 0 JA'Po2 

121 

131 
Where K is a constant pertaining to the parl!cular part K can be determined from equation 3 by measuring Po (at equilibrium) 

for a known TA Using this value of K the values of Po and T J can be obtained by solving equat1ons ( l) and (2) iteratively for any 
value of TA 

([!} MOTOROLA Semiconductor Products Inc. 



DC ELECTRICAL CHARACTERISTICS {Vee=- 5 D Vdc ± 5% Vss =-0 TA= D to 70°C unless otherwise noted) !Reference Figures 2-41 

Characteristic Symbol Min Typ Max Unit 

Input High Voltage V1H 2.0 - Vee V 

Input Low Vollage V1L -0.3 - 0.8 V 

Input Leakage Curren! Im - 0 1 2 5 ,,A 

H1-Z (Off Stiltel Input Current !Vee= 5 25 V) (V1n::::: 0 4 lo 2 4 Vl ITSI -10 - 10 µA 

Output High Voltage 
24 30 - V 

!!Load= - 100 11A) 

Output Low Voltage U1oad = 1 6 mAl VQL - 03 0 4 V 

Internal Power D1ss1pat1on (Measured at TA=0°Cl Po 150 300 mW 

Input Capacitance D0-D7 
Cin 

- - 12.5 
pF 

AH Others - - 10 

Output Capac11ance All Outputs Cout - - 10 pf 

BUS TIMING CHARACTERISTICS !Reference Figures 2 and 31 

ldent 

Number 

----------------,----,-==.__,-,--,-,c-,-,--,.-M-C-68_8_3_5~-, 
MC6835 MC68A35 

l 

3 

Characteristics 

Cycln T111H' 

'Ul:,t• VVIUIII, [ Luvv 
l'nlS<• W,clll> E -fj,cJ,____ --

~ .;..:_ - . ---------·-
Clock l1,1ns1111m Tirrn 

Q Address HDld l1t11f! 1HSl 

Symbol Min Max Min Max Min Max Unit 

1:yc O G lU 10 10 0 07 10 
,130 280 l.,\•Vtl ;;10 -

,l[il) 280 -----+-''1_,vEti_~r-----+--+---+---+-:u_o+--+----; 
2', "" ---+-~'•~· '~1 -1--.. -1-~-1 - -r---+--t-----2-0-+----< 

1All 10 Ill I() 

,~-- ns S1;1t1p B1:lo111 l: IAS 80 60 -10 

1,1 W anll Cs S,;11>11 B,;11111, I, 

15 Hold Tum, for W CS 
ICS Bil --,~~,- -10 

Ill 

21 \A/111!! D,ita Hold l m111 Ht;q1J1!(:d 10 10 

31 Peripheral Input Da1a Sr:top iosw 1GG 80 60 ~--~---------------------L-- - -- -~ -

FIGURE 2 - MC6835 BUS TIMING 

NOTES 
1 Voltage levels shown are VL:s:04 V VH~2 4 V unless otherwise noted 

2 Measurement points shown are O 8 V and 2 0 V unless 01herw1se noted 

® MOTOROLA Semiconductor Products Inc. 



FIGURE 3 - BUS TIMING TEST LOAD 

50V 

MM06150 
or Equiv 

C = 130 pF lor DO•D7 
""30 pf !or MAO·MA 13, nAO•nM 

OE HS VS and CURSOR 

R=-11 kO for 00-D7 
= 24 kO for All Other Outputs 

CRTC TIMING CHARACTERISTICS I See F,gu,e 41 

Characteristics 

Minimum Clock Pulse Width, Low 

Minimum Clock Pulse Width, High 

Clock Frequency 

Rise and Fall Time for Clock Input 

iv'll!!IIUIY MUUlu:.a Uu1c.1y 111r1e 

Raster Address Delay Time 

Display Timing Delay Time 

Horizontal Sync Delay Time 

Vertical Sync Delay Time 

Cursor Display Timing Delay Time 

PWcH 

CLK 

MA0-MA13 

AAO-RA4 

DE 

HS 

vs 

CURSOR 

MC6835 
Symbol Min Ma, 

PWCL 150 

PWCH 150 

fc 330 -
lr,lf - 20 

tMAO l(JU 

1AAD 160 

1DTD - 250 

!f-lSD 250 

tvsr - 250 

1CDD - 250 

FIGURE 4 - CRTC TIMING CHART 

MC68A35 MC68B35 

Min Ma, Min Ma, 
140 - 130 

140 - 130 -

300 270 -
- 20 20 

IOU IOU 

- 160 - 160 

250 - 200 

- 250 ·- 200 

250 200 

- 250 200 

1COO 

Unit 
ns 

ns 

ns 

ns 

n~ 

ns 

ns 

ns 

ns 

ns 

NOTE Timing rneasu1ements are reJerericed to anti from a low voltage ol O 8 voI1s i.lnd ,:i tugti vulti19e ot 2 0 vol!S ,in!e5S ott1crw1se notec! 

({!) MOTOROLA Semiconductor Products Inc. 



CRTC INTERFACE SYSTEM DESCRIPTION 

The MC6835 CRT Controller generates the signals 
necessary to interface a digital system to a raster scan CRT 
display In this type of display, an electron beam starts 1n the 
upper left hand corner. moves quickly across the screen and 
returns This action 1s called a horizontal scan Alter each 
horizontal scan the beam is incrementally moved down in the 
vertical direction until it has reached the bottom At this 
point one frame has been displayed, as the beam has made 
many horizontal scans and one vertical scan 

Two types of raster scanning are used in CRTs, interlace 
and non-interlace. shown in Figures 5 and 6 Non-interlacing 
scanning consists of one field per frame The scan lines in 
Figure 5 are shown as solid lines and the retrace patterns are 
indicated by the dotted lines Increasing the number of 
frames per second w1!! decrease the flicker Ordinarily, either 
a 50 or 60 frame per second refresh rate 1s used \0 minimize 
beating between the frequency of the CRT horizontal 
oscillator and the power line frequency This prevents the 
displayed data from weaving or swimming 

Interlace scanning is used 1n broadcast TV and on data 
monitors where high density or high resolul!on data must be 
displayed Two fields. or vertical scans are made down the 
screen for each single picture or frame The first field (Even 

field) starts in the upper !eft hand corner; the second (Odd 
field) in the upper center Both fields overlap as shown in 
Figure 6. thus interlacing the two fields into a single frame 

1n order to display the characters on the CRT screen the 
frames must be continually repeated The data \0 be 
displayed is stored in the Refresh ( Screen) memory by the 
MPU controlling the data processing system The data is 
usually written in ASCII code. so it cannot be directly 
displayed as characters A Character Generator ROM is 
typically used to convert the ASCII codes into the ··dot"' pat• 
tern for every character 

The most common method of generating characters is to 
create a matrix of ,·x·· dots (columns) wide and ··y" dots 
(rows) high Each character is created by selectively filling in 
the dots As ··x·· and ,·y·· get larger a more detailed character 
may be created Two common dot matrices are 5 x 7 and 
7 x 9 Many variations of these standards will allow Chinese 
Japanese, or Arabic letters instead of English Since 
characters require some space between them. a character 
block larger than the character is typically used as shown in 
Figure 7 The figure also shows the corresponding timing 
and levels for a video signal that would generate the 
characters 

FIGURE 5 - RASTER SCAN SYSTEM (NON-INTERLACE} 

Horizontal Scan 
Period 

Honzonial Retrace 
Period 

Vertical Scan Period 

Vertical Retrace Period 

FIGURE 6 - RASTER SCAN SYSTEM (INTERLACE} 

---Even Number Field (F1rs1) 

_,_ ~"--·Odd Number Field !Second) 

@ MOTOROLA Semiconductor Products Inc. 



CHARACTER DISPLAY ON THE SCREEN AND VIDEO SIGNAL 

(J11,:l.111t 

l•l Sc<1n 
\ HH", 

s~cuncJ Sc'-m Lin, 

) 

\ 

-

()1,1• Ct1dfd\ kl 

i--- - --

r,- -1 _J 
-,-

--

J l~ _[ L _J L 

Re!emng to Figure 1 the MC6835 CRT controller 
generates the Refresh addresses (MAO-MA 13). row ad
dresses (RAO-RA4l, and the video urning (vertical sync 
VS honzontal sync HS and display enable DE) Other 
functions include an internal cursor register which generates 
a Cursor output when 11s contents compare to the current 
Refresh address A select 1npu1, PROG, allows selection of 
one of two mask programmed video formats (e g for 50 Hz 
and 60 Hz compatibility) 

All timing 1n the CRTC 1s derived from the CLK input. !n 
alphanumeric terminals. this signal 1s the character rate The 
video rate or ··ctor clock is externally divided by high speed 
logic lTTU to generate the CLK signal The high speed logic 
must also generate the timing and control signals necessary 
for the Shift Register. Latch and MUX Control shown in 
Figure 1 

Tt,e processor communicates with the CRTC through an 
8-bit data bus by writing into the five user programmable 
registers of the MC6835 

The Refresh memory address 1s multiplexed between the 
processor and the CRTC Data appears on a secondary bus 
separate from the processor's bus The secondary data bus 
concept in no way precludes using the Refresh RAM for 
other purposes It looks like any other RAM to the processor 
A number of approaches are possible for solving contentions 
for the Refresh memory 

1 Processor always gets priority (Generally, ··hash oc
curs as MPU and CRTC clocks are not synchronized) 

'-1 

Jl 

\

Cl"""""' 
D1Sf>li!V 

ii.""'"'"·' j 

Processor gets priority access anytirne. but can be 
synchronized by an interrupt to perform accesses only 
dunng t1onzonta! and vertical retrace times 
Synchronize the processor wilt1 memory wait cycles 
(states) 

4 Synchronize the processor to the character rate as 
shown 1n Figure 8 The M6800 processor family works 
very we!! in this configuration as constant cycle 
lengths are present This mett1od provides no 
overhead for the processor as there 1s never a conten
tion for a memory access All accesses are 
transparent 

FIGURE 8 - TRANSPARENT REFRESH MEMORY 
CONFIGURATION TIMING USING M6800 FAMILY MPU 

E 

I 

CATC Accesses 
Refresh Memory 

MPU 1\ccesses 
Refre~;ti rvkmorv 

I I 
I I 
~lcyc"" nxtc or tclm--., 
I I 

Where rn n are 111te9ers. le 1s charactr!t per1ocl 

@ MOTOROLA Semiconductor Products Inc. -----~ 



PIN DESCRIPTION 

PROCESSOR INTERFACE 

The CRTC interfaces to a processor bus on the data bus 
(DQ.Q7) using CS. RS E. and W for control signals 

Data Bus (D0-07) The data ltnes (00-07) comprise the 
write only data bus 

Enable (E) The Enable signal 1s a high-impedance 
TTL/MOS-compat1b!e input which enables the data bus in

put/output buffers and clocks data to the CRTC This signal 
is usually derived from the processor clock The high-lo-low 
1rans1t1on 1s the active edge 

Chip Select (CS) The CS line 1s an actJve-low high-
impedance TTL/MOS-compatible input which selects the 
CRTC write to the internnl register file This should 
only be active when there is a valid stable beir.g 
decoded from the processor 

Register Select (RS) The RS hne is a high-impedance 
TTL/MOS-compatible input which selects either the Ad
dress Register (RS= ··o··i or one of the Data Reg1sters 
(RS= 1 ) of the internal register file when CS is low 

Write (Wl - The W ltne is a h1gh-1mpcdance TTL/MOS
compnt1b!e input which determines whether the internal 
register file gets writlen A write 1s defined as a low level 

CRT CONTROL 

The CRTC provides t,onzontal sync (HS). vertical sync 
IVSI and display enable IDEI s,gnals 

NOTE Care should be exercised when interfacing to 
CRT mon!lors ns many moniwrs cla1m1ng to be ··TTL com
patible have transistor input circu11s which require the 
CRTC or TTL devices buffering signals from the CRTC/video 
circuits to exceed the maximum rated drive currents 

Vertical Sync IVS) and Horizontal Sync IHS) These 
TTL-compatible outputs are active-high signals which drive 
the monitor directly or are fed to the video processing cir
cuitry to generate a composite video signal The VS signal 
determines the vertical position of the displayed text while 
the HS signal determines the horizontal position of the 
displayed 1ex1 

Display Enable tDE) This TTL-compatible output is an 
active-high signal which ind1cates the CRTC is providing ad
dressing in the active Display Area 

REFRESH MEMORY/CHARACTER GENERATOR AD
DRESSING 

The CRTC provides Memory Addresses (MAO-MA 13) to 
scan the Refresh RAM Row Addresses (RAQ-RA4) are also 
provided for use with character generator ROMs In a 
graphics system both tt1e Memory Addresses and the Row 
Addresses would be used to scan the Refresh RAM Both 

the Memory Addresses and the Row Addresses continue to 
run during vertical retrace 1hus allowing the CRTC IO provide 
the refresh addresses required to refresh dynamic RAMs 

Refresh Memory Addresses I MAO-MA 13) These 14 out-
puts are used to refresh the CRT screen with pages of data 
located within a 16K block of refresh memory These outputs 
are capable of driving one standard TTL load and 30 pF 

Row Addresses (RAO-RA4) These five outputs from the 
internal Row Address counter are used to address the 
Character Generator ROM These outputs are capable of 
driving one standard TTL load and 30 pF 

OTHER PINS 

Cursor This TTL-compa11ble output indicates a valid 
Cursor address 10 external video processing logic !t is an 
acuve-high signal 

Clock ICLK) - The CLK is a TTL/ MOS-compatible input 
used to synchronize all CRT functions except for the pro
cessor interface An externnl dot counter is used 10 derive 
this signal wt11ch is usually the character rate in an 
alphanumeric CRT The active transition 1s h1gh-10-low 

Program Select {PROG) - This TTL-compatible input 
allows selec11on of one of two sets of mask programmed 
video formats Set zero 1s selected when PROG is low and 
set one is selected when PROG 1s high 

Vee, GND - These inputs supply + 5 Vdc ± 5% to the 
CRTC 

RESET input is used to reset the CRTC 
Functionality of differs from that of other M6800 
pans RESET must remain !ow for at least one cycle of the 
character clock (CLK) A low level on the RESET input 
forces the CRTC into the following state· 

a All counters 1n the CRTC are cleared and the device 
stops the display operation 

b All the outputs are driven low. except the MAO-MA 13 
outputs which are driven to the current value in the 
Start Address Register 

c The control registers of the CRTC are not affected and 
remain unchanged 

The CRTC resumes the display operation immediately 
after the release of RESET 

CRTC DESCRIPTION 

The CRTC consists of mask-programmable horizon ta! and 
vertical timing generators, software-programmable linear ad
dress register. mask-programmable cursor logic and control 
circuitry for interfacing to a M6800 family microprocessor 
bus 

All CRTC timing 1s denved from CLK. usually the output of 
an external dot rate counter Coincidence (CO) circuits con
tinuously compare counter contents to the contents of the 

(f!) MOTOROLA Semiconductor Products Inc. 



TABLE 1 - INTERNAL REGISTER ASSIGNMENT 

cs RS A
4
ddr;ss/e~is~r Register Register File 

Program Read Write 
Number of Bits 

' Unit 7 6 5 4 3 2 1 0 

1 X X X X X X X - - I,' I,., 1,1, '\I"--
0 0 X X X X X AR Address Register No Yes I"--'' 

RO Honzonial Tota! Char No No 

Al Horizontal O1sployed Char No No 

R2 H Sync Pos1tton Char No No 

Note 3 R3 Sync Width - No No V V V V H H H H 

R4 Ven1cal T oial Char Row No No I, 
R5 V Total AdjUS\ Scan Line No No I"--,, 
R6 Vertical Displayed Char Row No No ' R7 V Sync Pos111on Ctiar Row No No ' RB Interlace Mode and Ske,•, Nute 1 No No C C D D I I 

R9 Max Scan Line Address Scan Line No No ' '" RlO r:wsnr Suirt Sr;rn Lir1P Nn No '- R p INnw 2l 

I/ \ Rl 1 Cursor End Scan Line No No ,,, 
0 1 0 1 1 0 0 R12 Start Address (Hl No Yes 0 0 

0 1 0 1 1 0 1 R\3 Stan Address (U - No Yes 

0 1 0 1 1 1 0 R14 Cursor 1H) - No Yes 0 0 

0 1 0 1 1 1 1 R15 Cursor 1U - No Yes 

NOTES 
1 The Interlace ConHol 1s shown 1n fable 2 wh!le Skew Control 1s shown m Table 3 
2 811 5 of the Cursor Stan Raster Register is used to blink period control and 81161s used to selec1 blmk or non-blink 
3 R0·Al 1 are rnask-prograrnmable and are no1 accessible via the data bus 

mask programmable register file. RO-A 11 For t1onzonu:il t1m
mg generation comparisons result 1n 

1 Horizontal sync pulse (HS) of a frequency pos111on 
and width determined by the register contents 

Horizontal Display signal of a frequency pos1t1on and 
duration determined by the register contents 

Tt1e horizontal counter produces H clock which dnves the 
Scan Line Counter and Vertical Control The contents of the 
Raster Counter are continuously compared to the Max Scan 
Line Address Register A co1nc1dence resets the Raster 
Counter and clocks the Vertical Counter 

Compansons of Vertical Counter contents and Vertical 
Registers result in 

1 Vertical sync pulse (VS) of a frequency. pos1uon and 
width determined by the register contents 

Vertical Display signal of a frequency. position and 
duration deterrrnned by the register contents 

The Vertical Control Logic has other functions 

1 Generate row selects. RAO-RA4. from the Raster 
Count for the corresponding interlace or non-interlace 
modes 

Extend the number of scan Imes 1n the vertical total by 
the amount programmed in the Vertical Total Ad1us1 
Register 

The cursor logic determines the size and blink rate of the 

cursor as 1nd1cated by the register contents 
The Linear Address Generator is driven by CLK and 

locates the relative pos1t1ons of characters 1n memory and 
their pos111ons 011 the screen Fourteen outputs. MAO-MA 13, 
are available for addressing up to four pages of 4K 
characters eight pages of 2K ct1aracters. etc 

Five add!!ional write-only registers define the Start Ad· 
dress and cursor posnion Using the Start Address Register 
hardware scrolling through 16K characters is possible The 
Linear Address Generator repeats the same sequence of ad
dresses for each scan line of a character row The Start Ad
dress Register and the Cursor Position Register are program
med by the processor through the data bus. D0-D7 and the 
control signals W. Es. RS. and E Refer to Figure 9 

REGISTER FILE DESCRIPTION 

The MC6835 has 17 control registers of which 12 are mask 
programmable The remaining five registers Address 
register, Start Address register pair. and Cursor Position 
register pair are write-only registers programmed by the 
MPU These registers control horizontal timing_ vertical tim~ 
ing. interlace operation. row address operation and define 
the cursor cursor address and start address The register 
addresses and sizes are shown in Table 1 

(f!) MOTOROLA Semiconductor Products Inc. 
8 



FIGURE 9 - CRTC BLOCK DIAGRAM 

Vee GND 

HS 

CLK 

H---1-+aM 

HH---1-tl""i 

H-+-+-+-+.., 

Horizontal 
CTR I+ 2561 

MC 

CE Horizontal 
Sync Width 
CTR(+ 161 

MC 

Vertical 
Control 

L--"l"--~--7 

Hend 

CLK 

linear 
Address 

Generator 

Prog W CS RS E RESIT 

R9 

Horizonat Displayed 
Reg. 

Sync Position Reg 

Horizontal Sync 
Width Register 

Vertical Total Reg 

Vertical Total 
Adjust Register 

V Display 

Vertical Displayed 
Reg. 

Vertical Sync 
Position Reg. 

Max Scan Line 
Address Reg. 

AlO Cursor Start Reg 

A 11 Cursor End Reg 

~g Start Address Reg 

~~: Cursor Address Reg 

RAO-RA4 DO-D7 

@ MOTOROLA Semiconductor Products Inc. 

DE 

HS 



MASK PROGRAMMABLE REGISTERS R0-R11 

The twelve mask programmable registers determine the 
display format generated by the MC6835 Tt1e PROG input 1s 
used to select one of two sets of register values 

Figure 10 shows the v1s1ble display area of a typical CRT 
monitor giving the prnnt of reference for horizontal registers 
as the left most displayed character position Horizontal 
registers are programmed in character clock wne units with 
respect to the reference as st1own 1n Figure 11 The point of 
reference for the ver11cal registers 1s the top character posi
tion displayed Vertical registers are programmed in 
character row times or scan line times as shown in Figure 12 

Horizontal Total Register (RO) This 8-b!I register deter• 
mines the horizontal sync (HS) frequency by defining the HS 
period tn character 11mes It Is the total of the displayed 
characters plus the non-displayed character 11mes (retrace) 
minus one 

Horizontal Displayed Register (All T111s 8-bl! register 
determines the number of displayed characters per lme Any 
8-b1t number may be programmed as long as the contents of 
RO are greater than the contents of R1 

Horizontal Sync Position Register {R2) This 8-bit 
register controls the HS position The horizontal sync posi-
11on defines the horizontal sync delay (Front Porch) and Hie 
horizontal scan delay (Back Porch) When the programrned 
value of this register is increased. the display on the CRT 
screen Is shifted \0 tt1e left When the programmed value Is 

decreased the display Is shifted to the right Any 8-bit 
number may be programmed as long as the sum of the con
tents of R 1. R2. and the lower four bits of R3 are less than 
the contents of RO 

Sync Width Register (R3) This 8-b1t reg1ste1 determines 
the width of the vertical sync (VS) pulse and the horizontal 
sync (HS) pulse Programming lhe upper four bits for 1-to-15 
will select VS pulse widths from 1-to-15 scan-hne t1rnes Pro
gramming the upper four bits as zeros will select a VS pulse 
width of 16 scan line times The HS pulse width may be pro
grammed from 1-to-15 character clock periods thus allowing 
compaub1hty with tt1e HS pulse width spec1f1cat1ons ol many 
different monitors If zeros are written into the !ower lour 
b!ls of tt11s register then no HS Is provided 

Horizontal Timing Summary (Figure 11) 1'111::: Lhflt:,~nce 
between RO and Al is 1t1e horizontal blanking interval This 
1ntmval In the horirnntal scan period allows the bt'arn to 
return ( retrace) 10 tl1e left side of the screen The retrace ume 
Is determined by the monitor's t1onzontal scan components 
Retrace tirne Is less than the t1or120ntal blanktng interval A 
good rule of thumb Is to make the horizontal blanking about 
20% of the total horizontal scanning period for a CRT !n 1n• 
expensive TV receivers. the beam overscans the display 
screen so that aging of parts does not result in underscan
nIng Because of t!1is. the retrace t1me should be about 1 /3 
the horizontal scanning period The horizontal sync delay 
HS pulse width and horizontal scan delay are typically pro
grammed with 1:2:2 ratio 

FIGURE 10 - ILLUSTRATION OF THE CRT SCREEN FORMAT 

-------Number o! Ho11zon1al Total Char lNht + l>-1 --------, 

Number of Horizontal Displayed Char (Nhdl 

lfr 
~ & t½ 

A B C 

> -o E 
~ ~ E Hor1zon1a! 

6 ! i 
] ~ g 
i 0 

; I 
" " JL 
C 

Total Scan Line Adjust (Nadi)-

NOTE 1 T1m1ng values are described in Table 8 

Display Period 

Ven1cal Retrace Period 

@ MOTOROLA Semiconductor Products Inc. 
10 

Retrace 
Period 

}Lme 



@ 
:e: 
0 
a 
~ 
0 ... 
ll, 

::: (/) 
(1) 

3 
c=;· 
0 
::i 
g. 
(') 

0 ... 
"t, 
a 
Q. 
t:: 
(') 

en' 
S' 
!1 

FIGURE 11 CRTC HORIZONTAL TIMING 

Horizontal T oia! (RQJ 

i.t-------Honzontal Display (Rl)NhctXtc------------H , R :1 S
<---------------rs1={Nh1.,.llxtc--------------------~ 

le or1zonia eirace __ , 

CLK ~~~ 
I I I I I I I I I I-·, 1 1 ,-~~ 
I 0 I I I I I I INhd - ii Nhd I I IN : N I ' I I I I I 

MAOMA11'¥ * * ' ~ ~ ~ t * ~ fsp-, hsp~ ~ t f Nh1 ~ 
I I I I I I I I I I I I I I I 1 I I 

C 
1 0 I I I 2 I j I 

1
, ~ iNhd-1jl Nhd I I I ~ INhsp-1 Nhsp I I ~I I 11 Nh I 

t1arac1er # I . . . . I I • I I i · · I · · 
1 

l - ! • • • I 1 I . j I I 

---------Horizontal Svnc Position (A2) ): HS Pulse Width~ I 
HSYNC I ..._ _F,on1 Po<eh !Sync Delayl---+r--Nhsw x le ~...aack P.::h (Scan Delay~ 

I -~ I ~ I 

0,spenJ •~'-----_;"-,,. ~ / 

• Timing 1s shown for first displayed scan row only. See Chart in Figure 15 for other rows The m1t1al MA is deterrrnned by !he contents of Start 
Address Register, R12/A13. Timing 1s shown for R12/R13=::0 

NOTE 1: Timing values are described m Table 5 



@ 
I 
0 
a 
:1J 

~ 
~ 

;::; Cl) 
(I) 

3 
5· 
0 
::i 
Q. 
t:: 
(') 

0 ., 
-0 a 
Q. 
t:: 
(') 

1it 
:i r 

RA0-RA4 
I I 
is Interlace 
Sync and 
Video Mode 
Odd Field 

MA0·MA13"" 

Character 
Row# 

FIGURE 12 - CRTC VERTICAL TIMING 

1F"" !Nv1 + II Xl,r ., N,,rl, x 

Field 
1-<f----------------Vewcal Total !R4l-Vert1cal ~r~~===-Ver~c~ ~5:1,av = Nvd,,; 1tctR6 

a tll i -. I' l\lsf ~I 
1!N5i- ll ! l;~~-.~ N~~~~l~l 

I 0. 1 

"1 
I vol .,. 1~"'1~1J~Tact1=Nad1XtsJ 

Address Con11nues w lncremem sl I Field Ad1us1 Time , 

ll ll ll lll tll ll tll llYlll l lllllll l l Zif 
4 Io 

I 
ti v-i • ll-v-1- -..---, 

Nhtl 1Nvct-1l"l'Nhct+Nhtl I I 

~: I i I I:: 1 1,., , '"vd-1 I I Nvsp-1 I Nvsp j Nv, Nv1+l 

I I l j I ! Vertical ~16xt5J~ 
VSYNC I I ► I I I p2vnc Delay ~ Ve111cal Scan Delay 
!Non-Interlace! I I I ◄ I I ~ j Vertical $y/1c f 

VSYNC 
(Even F1e!dl 

VSYNC 
!Odd F1e!dl 

..,_---,-----,------j---Ver11cal Sync l Pulse l 

I I Pos111on lR7) I .. I 
I : \ 1 I ',---{"71---~"'"--------------t 
: I I !.SJ ·-+-! . I-{-',§! ' 
I I I I • I I • 2 I ~.,--------------------, 

I I ◄ I "' 
I I I I I 

r,_J--J-.,,J----,....}-~ L--.l.,.r---~-__j~----------'' 

must be an odd number ior both interlace modes 
1! MA 1s deierrnme-d by Rl2/A13 {Start Address Reg1s1erl, which 15 zero 1n this t1mmg example 

• • • N51 must be an odd nu:.iber for Interlace Sync and Video Mode 

NOTES 
to Figure 6 - The Odd Field is offset ½ horizontal scan time 

values are described in Table 5 



Bit 1 Bit 0 Mode 

Normal Sync Mode INon-lnterlaccl 

lnierlace Sync Mode 

lnwt1,1cc Sync and Video Mu(fo 

Bit 6 Bit 5 Cursor Display Mode 

Non-Blink 

Cursor Non•D1splr!y 

Blink l/16 Field Rate 

Blink, I /32 Field Ra!1-) 

FIGURE 13 INTERLACE CONTROL 

Scan Linc Address Sl'.OHl Lme ;.\ddress 

- - -0 

- -e- -1 

-e- - - s -2 

Scan Line Add1ess 
I) 

2- 3- - - 3 -I 
- e- - - -e -3 

, 00000 

1-++--------A-
- e - - -e- -5 

6 
--e-----e--2 

0 
- -e- -- -0-3 

., 00000 
- -e -e -e -e- -e -4 

s O -e 
-- ~ - - --1 
2--------
-- --- --J 

Eve11 
Fieltl 

- -5 

---7 

f:v11n Odd 
F1el1J Field 

al Normal Sync b) Interlace Sync cl Interlace Sync and Video 

Vertical Total Register (R4) and Vertical Total Adjust 
Register (R5) The frequency of VS 1s determined by both 
R4 and R5 The calculated number of character l!ne umes Is 
usually an integer plus a fraction to get exactly a 50 or 60 Hz 
vertical refresh rate The integer number of character line 
times minus one is programmed In the 7-bl! Verucal Total 
Reg1s1er (R4) The fraction of character line !!mes Is pro
grammed in tt1e 5-bit Vertical Total Ad1ust Register (R5) as a 
number of scan line umes 

Vertical Displayed Register (R6) - This 7-b!l register 
specifies the number of displayed character rows on the CRT 
screen. and is programmed In character row times Any 
number smaller than the contents of R4 may be programmed 
into R6 

Vertical Sync Position (R7) This 7-bit register controls 
the position of vertical sync with respect to the reference It 
Is programmed in character row times The value programm· 
ed in the register is one less than the number of computed 
character line times When the programmed value of this 
register ·1s increased. the display position of the CRT screen 
is shifted up When the programmed value is decreased the 
display position is shifted down Any number equal to or less 
than the vertical total (R4) may be used 

Interlace Mode and Skew Register (RB) - This 6-bit 
register controls the interlace modes and allows a program
mable delay of zero to two character clock times for the DE 
(d1splay enable) and Cursor outputs Table 2 shows 1he in

terlace modes ava·1Iab!e to the user These modes are 
selected using the two low order bits of this 6-bH register 

Table 4 describes operation of the Cursor and DE skew 
bits Cursor skew is controlled by bits 6 and 7 of RB while DE 
skew is controlled by bits 4 and 5 

!n the normal sync mode (non-interlace) only one field is 
available as shown in Figure 5 and 13a Each scan line is 
refreshed at the VS frequency (e g 50 or 60 Hz) 

Two interlace modes are available as shown in Figures 6 
13b. and 13c The frame time 1s divided between even and 
odd alternating fields The horizontal and vertical timing rela
tionship (VS delayed by 1 /2 scan line time) result~ in the 
displacement of scan lines in the odd field with respect to the 
even field 

In the Interlace Sync mode the same information is painted 
in both fields as shown in Figure 13b This is a useful mode 
for filling in a character to enhance readability 

In the Interlace Sync and Video mode alternating lines of 
the character are displayed in the even field and the odd 
field This effectively doubles the number of characters that 
may be displayed on a CRT monitor of a given bandwidth 

Care must be taken when using either interlace mode to 
avoid an apparent flicker effect This flicker effect is due to 
the doubling of the refresh period for all scan lines since each 
field is displayed alternately Flicker may be minimized with 
proper monitor design (e g . longer persistence phosphors) 

In addition. there are restrictions on the programming of 
the CRTC registers for interlace operation· 

a The Horizontal Total Register value. RO. must be odd 
Ii e an even number of character times) 

For the Interlace Sync and Video mode only. the Ver
tical Displayed Register !R6l must be even The pro
grammed number Nvd. must be ½ the actual number 
required 

@ MOTOROLA Semiconductor Products Inc. -------' 
13 



Value Skew 

00 No Character Skew 

01 One Characier Skew 

10 Two Character Skew 

11 Not Available 

Maximum Scan Line Address Register (A9) - This 5-b11 
register determines 1he number o! scan lines per character 
row 1nclud1n~J the ~pacing 1hus controlhng operation of the 
Row Address counter The prograrnrnod value Is a maximum 
address and is one less than the number of scan lines 

Cursor Start Register {R10) and Cursor End Register (R11) 

These registers allow a cursor o! up to 32 scan lines In 
height to be placed on any scar1 line of tlie character block as 

, , • -, 1 , I 1,, clr.f1n1> th, 

s\Jrt scan 
the Cursor Start Address Register control the cursor opera 
110n as shown in Table 4 Non-display, display and two blink 
modes ( 16 times or 32 11r11es the field period) are available 
R 11 Is a 5-bit register which defines the last scan line of the 
cursor 

When an exteInal blink teature on characters is required 11 
be necessary to perlorm cursor blink externi'llly so that 
blink rates are syn;cliron,zecl Nole ttiat an invert/non 

invert cursor Is 1mplcrnentcd by prograrnrnIng the 
CRTC for a bl,nk,n,J cursor and externally InvertIng the video 
signal with an gate 

PROGRAMMABLE REGISTERS 

Tile four programmable registers allow the MPU 10 posI 

FIGURE 14 

110n the cursor anywhere on the screen and allow the start 
address to be rnodd1ed 

The Address Register 1s a f1ve-b1t write-only register used 
as an'· 1nd1recr· or "prnntflr" register Its contents are the~ 
dress of one of the other 18 registers When both RS and CS 
are low the Address Register is selected Wtien CS 1s low 
and RS Is i11gh. the register pointed to by the Address 
Register Is selected 

Start Address Register (R12-H, R13-l) This 14-b11 
write-only register pair controls the !irst address output by 
the CRTC after vertical blanking lt consists o! an 8-bll low 
order (fv1A0-MA7l register and a 6-b1t high order (MAS· 
MA 13) register The start address iegIster determines which 
portion of the rc!rr.sti RAM 1s displayed on the CRT screen 
Hardwore scro!hng by character line or page may be ac· 
comp\1sf1ed by rnod1fy1ng the contents of t!11s register 

Cursor Register (R14-H. R15-L) - This 14-bl\ wme-only 
register pair 1s programmed to pos111on the cursor anywhere 
In the rafrosh RAM area thus allowing tiardware paging and 
scrolhng through memory without loss of the original cursor 
posI1Ion lt consists o! an 8-b11 low order (MA0-MA7l register 
and a 6-b11 t11~1t1 orcler {MAB-MA 13) register 

CRTC INITIALIZATION 

Registers R12·R15 must be 1nit1a\ized a!ter the system 1s 
powered up The processor will normally load t!ie CRTC 
register tile from a firmware table Figure 15 shows an M6800 
program which could be used to rirogram the CRT Con
troller 

CURSOR CONTROL 

! On I 011 I "" I 

10 

I -I 

II --l--l-+-1-l-+-1-

Cursor Swn Adr .:.. 9 
Cursor Erid Adr ,__ 9 

I 

~ 8ilfl> Ptiiiud -
I 16 {H 32 Tir!l(", 

Example of Curso1 Display Mode 

1 
1 

I 

7 
8 
9 

1 0 
1 I 

Cursor Swn Atlr - 9 
Cuisor End Adr =- 10 

9 
10 

I 

I I I 

Cursor S\i.111 Adr "'1 
ClHSOI End Adi .;= 5 

® MOTOROLA Semiconductor Products Inc. 
14 



ADDITIONAL CRTC APPLICATIONS qutred to meet system specifications The worksheet of 
Table 5 1s extremely useful 1n computing proper register 
values for lhe MC6835 The program shown in Figure 15 may 
be expanded to properly load the calculated register values in 
the MC6845 Once the two sets of register values have been 
developed fill out the ROM program worksheet of Figure 18 

The foremost system function which may be performed by 
the CRTC controller is the refreshing of dynamic RAM This 
is quite simple as the refresh addresses continually run 

Both the VS and the HS outputs may be used as a real 
time clock Once programmed the CRTC wilt provide a 
stable reference frequency 

SELECTING MASK PROGRAMMED REGISTER VALUES 
A prototype system may be developed using ttie MC6845 

CRTC This wil! allow reg1ster values to be rnod1f1ed as re-

To order a custom programmed MC6835. contact your 
local field service office. local sales person or your local 
Motorola representative A manufacturing mask will be 
cleve!opcd for the data entered m Figure 18 

FIGURE 15 M6800 PROGRAM FOR CRTC INITIALIZATION 

PAGE 001 CRTCINIT,SA:l MC6835 CRTC initialization program 

00001 NAM MC6835 
00002 TTL CRTC initialization program 
00003 OPT G,S,LLE=85 print FCB'x, FDB's & XREF table 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012A 0000 
00013A 0000 C6 
00014A 0002 CE 
00015A 0005 F7 
00016A 0008 A6 
00017A 000A 87 
00018A 000D 08 
00019A 000E 5C 
0 00 20A 000F Dl 
00021A 0011 26 
00022A 0013 3F 
00023 
00024 
00025 
00026A 1020 
00027A 1020 
00028A 1022 
00029 

9000 
9001 

0C 
1020 
9000 
00 
9001 

******************************************************** 
: Assign CRTC address 

A CRTCAD EQU $9000 Address Register 
A CRTCRG EQU CRTCAD+l Data Register 

******************************************************** 
* Initialization Program 

ORG 0 a place to start 
A LDAB $C initialize pointer 
A LDX 38RTTAB table pointer 
A CRTCl STAB CRTCAD load address register 
A LDAA 0,X get register value from table 
A STAA CRTCRG program register 

INX increment counter 
INCB 

10 A 
F2 0005 

CMPB $10 finished? 
BNE CRTCl no: take branch 

0080 
0080 

SWI yes: call monitor 
******************************************************** 
* CRTC register initialization table 

ORG 
A CRT'I'AB F'DB 
A FDB 

END 

$1020 
$0080 
$0080 

start of table 
Rl2, Rl3 - Start Address 
Rl4, Rl5 - Cursor Address 

TOTAL ERRORS 00000--00000 

CRTCl 0005 CRTCAD 9000 CRTCRG 9001 CRTTAB 1020 

® MOTOROLA Semiconductor Products Inc. 
15 



@ 
I 
0 
a 
:a 
0 r-
:I:. 

'" (/) (!) 

3 o· 
0 
:::i 
Q. 
t: 
0 
0 ., ,, 
a 
g. 
0 
;;; 
:i 
~ 

TABLE 5 - CRTC FORMAT WORKSHEET 

Display Format Worksheet CRTC leg1sters 

"1 Displayed Characters per Row 

2 Displayed Character Rows per Screen 

3 Character Matrix 

4 Characte1 Block 

5 Frame Relresh Rate 

a Columns 

b Rows 

a Columns 

b Rows 

6 Honzonial Osc1!la101 Frequency 

7 Active Scan lines llme 2 x Line 4b) 

8 T oial Scan Lines !Line 6- Line 5) 

9 Total Rows Per Screen !Line 8- Lme 4bl 

10 Vertical Sync Delay \Char Rows) 

11 Ven1cal Sync W1d1h {Scan Lines l 16)) 

12 Hor<lontal Sync Delay !Charac1e1 Times! 

13 Horizontal Sync Wuith (Character T1rnesl 

14 Horizontal Scan Delay !Character Times\ 

15 Total Character Times (Line l + 12 + 13.,. 14) 

16 Character Rate !lme 6 x 15) 

l 7 001 Clock Aaie !Line 4a x 16J 

Char 

Rows 

Columns 

Rows 

Columns 

Rows 

H, 

H, 

lmes 

lmes 

__ Rows and -··· :..1nes 

Rows 

lmes 

Chill T1rnes 

ChJr Times 

Char Times 

Char Times 

H, 

H, 

RO Horizontal Towl !lme 15·· ll 

R l Horizontal Displayed !Line ll 

R2 Horizontal Sync Pos111on 1Lin, I •r Line 12) 

R3 Horizontal Sync W1dtti lL1ne 3! 

q4 Ver11ca1 Total !lme 9- ll 

RS Vertical Ad1us1 1lme 9 Lmesl 

A6 Vertical Displayed ll111e 2l 

R7 Verucal Sync Postt1on lL1ne = - Line 101 

RB lnte!luce (00 Normul. 01 lnter dee 

03 lnierlace. and Video) 

R9 Max Scan Line Add (Line 'ib lJ 

A 10 Cursor Stan 

A 11 Cuisor End 

R12, R13 Start Address lH and l! 

R14, A\5 Cursor lH and Ll 

Decimal Hex 



© 
I 
0 
a 
:lJ 
0 ... 
~ 

~ en 
(I) 

3 
<'," 
0 
::i g. 
(') 

0 ... 
"'0 a g. 
(') 
;;; 
3" 
!') 

TABLE 6 - WORKSHEET FOR 80 x 24 FORMAT 

Display Format Worksheet 

l Displayed Characters per Row 

2 Displayed Character Rows per Screen 

J Character Matrrx 

4 Charac1er Block 

5 Frame Refresh Rate 

a Columns 

b Rows 
a Columns 

b Rows 

6 Horizontal Oscillator Frequency 

7 Ac11ve Scan Lines llrne 2 x line 4b! 

8 Total Scan Lines (line 6- Lme 5J 

9 Total Rows Per Screen !Line 8- Lme 4bl 

10 Vertical Sync Delay !Char Aowsl 

11 Vertical Sync Width !Scan Lines !16)) 

12 Horizonial Sync Delay !Character Times) 

13 Horizontal Sync W1d1h !Character T1mesl 

14 Horizonwl Scan Oe!ay !Character T1mesl 

__ B_O_ C!1ar 

__ 2_4__ Rows 

__ 7______ Column~ 

Rows 

Columns 

__ 11 ___ Rows 

__ 6_0_ H, 

___!§_,_§QQ___ Hz 

__ 2_64_ Lines 

__ 3_10_ Lines 

~ Rowsand~2_L1nes 

Aow~--

__ 16___ Lines 

__ 6___ Char T1rnes 

___ 9__ Ct1ar Tunes 

___ 7__ Char Times 

15 Tota! Character Times !Lme !--r-12+ 13+ 141 __ 1_02__ Char T,mes 

16 Character Rate (lme R 11mes 15! 

17 Dot Clock Raw llu1P 4a limes 16! 

~ MHz 

~ MHz 

CRTC Registers 

RO Horizontal Tow! I line 15 minus l) 

Al Horizonial Displayed llme 1l 

Dec1ma! Hex 

__ 1_0_1 _ __6_5 __ 

__ B_O __ __ 50 __ 

R2 Hu11zonta! Sync Pos111on I Line ! --r- Line 121 __ 8_6 __ __ 5_6 __ 

R3 Hofllontal Sync W1dl!1 IL1ne 131 __ 9__ _ __ 9 __ 

R4 Vertical T oial I line 9 minus H __ 27__ __1L_ 

A5 Ver11cal Ad1ust lline 9 Lmesl __ 2__ __O_A __ 

R6 Ver11ca! Displayed !Lme 2J __ 24__ __18 __ 

R7 Vertical Sync Position tl!ne 2.,. Line lOJ __ 24__ _ __ 18 __ 

AB Interlace !00 Norma!. 01 Interlace. 

03 lnierlace. :md Video! 

R9 Max Scan Lme Add llme 4b rrnnus l) 

R 10 Cursor S1an 

A 11 Curs01 End 

R12. A13 Start Address IH and U 

R14 R15 Cursor (Hand LJ 

__ o __ 

__ 1_0__ _ __ B __ 

__ o__ _ __ o __ 
__ 11__ _ __ B __ 

~- __ oo __ 

__ s_o __ 
__ 1_2_s__ _ __ oo __ 

__ BO __ 



OPERATION OF THE CRTC 

Timing of the CRT Interface Signals T1m1ng charts of 
CRT interface signals are illustrated in this sp,r.t1nn with 1he 
aid of programmed example of the CRTC When values 
listed in Table 7 are programmed into CRTC control 
registers, the device provides the outputs as shown in the 
Timing Diagrams (Figures 11. 12 16 and 17) The screen 

format of this example 1s shown in Figure 10 Figure 17 1s an 
illustration of the relation between Refrest1 Memory Address 
(MA0-MA13) Raster Address \RA0-RA4) and the posnion 
on the screen In this example. the start address 1s assumed 
to be ·'Q' 

TABLE 7 VALUES PROGRAMMED INTO CRTC REGtSTERS 

Register 
Register Name Value 

Programmed 
Number Value 

RO H Total Nht + 1 Nht 

RI H D1sp\ay1;:d Nhd Nhd 

R2 H. Sync Posiuon Nhso Nhso 
no µ C::,mr Width Nhc:•<> Nhi;;w 

R4 V. To1al Nvt + 1 Nvt 

R5 V Scan Line Ad1ust Nad1 Nad 

R6 V, Displayed Nvd Nvd 

R7 V, Sync Pos!l1on Nvso Nvsp 

RB Interlace Mode 

R9 Max. Scan Line Address Nst Nsl 

RIO Cursor Start 

Rll Cursor End 

R12 Start Address (H) 0 

R13 Start Address (U 0 

R14 Cursor (H) 

A15 Cursor (L) 

@ MOTOROLA Semiconductor Products Inc. -----~ 
18 



@ 

~ 
a 
:JJ 
0 ... 
~ 

"' (/) (1) 

3 
c=;· 
0 
::i g. 
(') 

0 .., 
"CJ a 
Q. 
C: 
(') 
;;; 
:i" 
!"> 

FIGURE 16 - CURSOR TIMING 

RAO-RA4·ii::============:ic======::::;======F=====~=====~ 
I 

MAOMA13"~ , ' ~ , • , • ~ , ~ 
; Nhd Nhd+ 1 Nhd+21 I Nhd.,.. I Nhd I Nhd.,.. 11Nghd+21 I Ntid- I Nhd ! Nhct-1~1 / Nhd- l 

: I I I N111 I l I I : Nhi I I : : I Nht : 

Character Row~ t:=::t==:i==:::::==::::==~==t==::==::::::==::c=:::::==+==t===+===I:::=:j 
Character:: \ 

Cursor 

I 

I 
I , 

I I 
I 

Cursor S1art = 1 

Cursor End= J 

2 

I I I 

I~ I 
I I 

' I 
Nh1 0 

I I I i I i I 
I I ~: I 

I I I 
I I ' ' I I Nh1 0 ' I 
I I I 

I 

• "The 1ni11a! MA 1s determmed by the contents oi Siart Address Register R12. A 13 fo111nu 1::, st10wr1 rui R 12 R 13"' 0 

NOTE 1 T1mmg values are described 1n Table l:l 

I 

i 
I 
~ 

Ntll 



@ 
I 
0 
a 5\ 

~ 
6 

~ 
5 
> 

)iii 
l's Cl) 

(1) 

3 o· 
0 
::i 
0. 
~ 
0 ~ 
~ f} 
"'0 6 a 0 

~ 
z 

0 ~ ;;; J 
:i' ~ fl 

~ 

J : I Cha,acte, 
: ~ 

Qt: 
,c: 

) 

I 

' 

I 

2{Nso 
) 

I 

( 0 

Nvd- 1< 
l Ns 
( n 

N,ct( 

l_ Ns 

) 

I 

N,,{ 0 
Ns 

Nv,T c,{ 
Nact 

1 

0 

I 
I 
0 

Nhd 

I 
1 

Nhd 

2XNhct 

I 
I 

2XN:ict 

j 
(Nvct- llx Nhd 

I 
(Nyd- ii X Nhd 

Nvd x Nhd 

i 
Nvd x Nhct 

i>Jv1 x Ntid 

I 
Nvt x Nhd 

lNv1 + l)" Nhd 

I 
I 

(Nvt + ll x Nhd 

FIGURE 17 - REFRESH MEMORY ADDRESSING IMAO-MA13I STATE CHART 

Horizontal Display H mzontal Retrace (Non~D1splay) 

I 
I Nhd- I Nhct 

i I i 
I Nh~- 1 N~d 

Nhd+ l 1 2X~t1d 

I I 
Nh~+ ! 2XN~ct- l 2xNhd 

2XN~ct ... I 3XN~ct- "1 3X~hd 

I I I 
2XNh,j + ! 3XNt;d- 1 3XNhd 

l l l 
(Nvct-1) x Nt1ct+ l - Nvct x Nt1d + ! Nvd: Nhd 

I I 
I I 

(Nvd-l)xNhct+l NvctxNhd-1 Nvd x Nhct 

Nvct x Nhd + j !Nvct+ 1) x Nhd- I !Nvct+ l)x Nhd 
I i I I 

i\lvd x Nhd + i (Nvct"- 1l x Nhct-1 !Nv1--e- ll x Nhd 

Nvt x ~hd+ 1 !Nv1+ 1l x Nhct-
0

1 !Nv1 + !l x Nhd 

i I I 
I (Nv1+1lxNhct-i {Nv1+ 1) x Nhd 

!Nv1+1l,xN1ict-1 INv1+2)xNhd- i !Nvt + 2) x Nhd 

I I i 
(Nvt-..llxNd+i !Nv1 +2) x Nhd- I !Nv1 + 2) x Nhd 

NOTE l The inmal MA Is determined by the contents ol start address register, Rl2/R13 T1m1ng Is shown tor R12/R13=0 Only Non· 
Interlace and Interlace Sync Modes are shown 

Nh1 

\ 
I 

Nht 

Nhd: Nh1 

I 
I 

Nhd + Nh! 

2Ntotj+ Nht 
I 
I 

2Nhd + Nht 

l 
!Nvd- llxNhct+Nht 

I 
I 

(Nvct- llxNhct+Nht 

Nvct x Nhct + Nht 
I 
I 

Nvd + Nhct+ Nht 

Nvt x Nhd + Nht 
1 
I 

Nvt x Nhct + Nht 

!Nv+ 1l~hd+ Nht 

I 

(Nvt+ llN,d+ Nht 



FIGURE 18 - ROM PROGRAM WORKSHEET 

The value in each register ol the MC6845 should be entered without any modifications Motorola will take care of translating into the appropriate 
format 

D All numbers are 1n decimal 

RO 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

RB 

R9 

R10 

R11 

ROM 
Program 

Zero 
IPROG=OI 

D AH numbers are in hex 

ROM 
Program 

One 
IPROG= 11 

ORDERING INFORMATION 

Package Type Frequency (MHz) Temperature Order Number 

Ceramic 1 0 0°C to 70°C MC6835L 
L Suffix 1 0 -50°C to 85°C MC6835CL 

1 5 0°C lo 70°C MC68A35L 
1 5 -50°C to 85°C MC68A35CL 
20 0°C to 70°C MC68835L 
2.0 -50°C to 85°C MC68B35CL 

Cerd'1p 1 0 0°C to 70°C MC6835S 
S Suffix 1 0 - so 0c to B5°C MC6835CS 

1 5 0°C lo 70°C MC68A35S 
1 5 - 50°C to 85"C MC68A35CS 
2 0 0°C to 70°C MC68835S 
2.0 - 50°C lo 85°C MC68835CS 

Plastic 1 0 0°C to 70°C MC6835P 
P Suffix 1 0 - 50°c to 85°C MC6835CP 

1 5 0°c to 70°C MC68A35P 
1 5 - 50°C to 85°C MC68A35CP 
20 0°C to 7D°C MC68835P 
2.0 - 50"C to 85°C MC68835CP 

@ MOTOROLA Semiconductor Products Inc. 
21 



PACKAGE DIMENSIONS 

[ □ ]} 
~, , - J TJ 
J<~ , , 1 , 1 , 1 1 

1 

Tt:~j .. ·.· :N.KHl1 
H ':1 0 SEATING PLANEGJ L -l-J M-1 ~ 

r 00 0 0 Q Q O o O O O 00 C '..C..C..J 

I .f'o o o o o o o o o o o o o o o o o JS 

r C 

-:·;(===A_ 
_ _jH:_ -<G- K 

',!~ll'Jf, 

[::::::::::::::::::] 

L SUFFIX 
CERAMIC PACKAGE 

CASE 715-04 

NOTES 
I LEADS TRUE POSHIONEO WITtHN O 25 mm 

!0010) OIAlAT SEATING PLANEI AT MAX 
MAT'L CONOITIJJN 

2 DIMENSION "L' TO CENTER Of LEADS 
WHHIFOOMEOl'AMLlEl 

P SUFFIX 
PLASTIC PACKAGE 

CASE 711.(0 

NOTES 
\ P □ SITIOllAL TOtERANCE Of UAOS (0) 

SHALL BE wnum 025 mm 10010) AT 
MAXIMUM MATERIAL CONO!TION, It, 
RELAT!OllTO SEATI/IC HANE ANO 
EACU OTHER 

2 DIMENSION t 10 CENTER Of LEADS 
WllEtl fOAMEO PARALLEL 

1 01MENS10N 0 00ES/l0T 1/ICLU0E 
M0t0 FLASH 

S SUFFIX 
CEADIP PACKAGE 

CASE 734-0'3 

l [D1SSI.AWlliPlMif 
~ Q(ME!l510ll L TO tEIH(fl 

~!RlittOE5Ll'l!!OlfOijM£0 

s ~;~{~J~~ii~~;t~~is 

Motorola reserves the right to make changes to any products herein to improve relmb11lly. function or design Motorola does not assumeanyhab1lityansing 
out of the application or use ol any product or circuit described herein. neither does 11 convey any license under IIS patent rights nor !he rights of others 

® MOTOROLA Semiconductor Products Inc. 
3501 ED BLUESTEIN BLVD AUSTIN TEXAS 78721 • A SUBSIDIARY OF MOTOROLA INC 



WESTERN DIGITAL 
C 0 R p 0 R .4 T 0 N 

BR1941(5016) Dual Baud Rate Clock 

FEATURES 

• 16 SELECTABLE BAUD RATE CLOCK FREQUENCIES 
• SELECTABLE 1X, 16X OR 32X CLOCK OUTPUTS FOR 

FULL DUPLEX OPERATIONS 
OPERATES WITH CRYSTAL OSCILLATOR OR 
EXTERNALLY GENERATED FREQUENCY INPUT 
ROM MASKABLE FOR NON-STANDARD FREQUENCY 
SELECTIONS 

• INTERFACES EASILY WITH MICROCOMPUTERS 
• OUTPUTS A 50% DUTY CYCLE CLOCK WITH O 01 % 

ACCURACY 
• 6 DIFFERENT FREQUENCY/DIVISOR PAIRS 

AVAILABLE 
• TTL, MOS COMPATIBILITY 

• PIN COMPATIBLE WITH COM5016 

XTAUEXT 1 XTAUEXT 2 

Vee Ir 

la TA 

AA Te 

Re Tc 
BA1941 

Ac To 

Ro sn 
STA GNO 

Voo NC" 

"INTERNALLY BONDED DO NOT CONNECT 
ANYTHING TO THIS PIN 

PIN CONNECTIONS 

389 

GENERAL DESCRIPTION 

The BR1941 is a combination Baud Rate Clock Gen
erator and Programmable Divider. It Is manufactured In 
N-channel MOS using silicon gate technology This de
vice is capable of generating 16 externally selected 
clock rates whose frequency is determined by either a 
single crystal or an externally generated input clock. 
The BR1941 is a programmable counter capable of 
generating a division from 2 to (2" -1) 

The BR1941 is available programmed with the most 
used frequencies in data communication Each 
frequency is selectable by strobing or hard wiring each 
of the two sets of four Rate Select inputs Other 
frequencies/division rates can be generated by 
reprogramming the Internal ROM coding through a 
MOS mask change Additionally, further clock division 
may be accomplished through cascading of devices 
The frequency output is fed into the XT AU EXT Input 
on a subsequent device 

TA 

TB 

TC 

TO 

sn 

+12V
+5V _.. 

GNO _., 

FREQUENCY 
DECODE 

ANO 
CONTROL 

FREQUENCY 
SELECT 

ROM 

FREQUENCY 
SELECT 

ROM 

BR1941 BLOCK DIAGRAM 



PIN DESCRIPTION 

PIN NUMBER SYMBOL 

1 XTAL/EXT 1 

2 Vee 

3 fR 

4-7 RA, RB, Re, Ro 

STR 

9 

10 

11 

12 

13-16 

17 

18 

NOTE 1 

Voo 

NC 

GND 

STT 

XTAL/EXT 2 

Tpw' 

NAME 

Crystal or 
External Input 1 

Power Supply 

Receiver Output 
Frequency 

Receiver Address 

Strobe-Receiver 
Address 

Power Supply 

No Connection 

Ground 

Strobe-Transmitter 
Address 

Transmitter 
Address 

Transmitter 
Output 
Frequency 

Crystal or 
External 
Input 2 

VIH~--
STROBE ,· · , 20V 
(STAISTT) , - • av 

VIL 

TSET,UP -----i 

VIH= 
ADDRESS 

2
8
~V 

Vil 

'ADDRESS NEED ONLY BE VALID DURING THE LAST 
TPW TIME OF THE INPUT STROBE 

CONTROL TIMING 

ABSOLUTE MAXIMUM RATINGS 

FUNCTION 

This input receives one pin of tt1e crystal package or 
one polarity of the external input 

+ 5 volt Supply 

This output runs at a frequency selected by the 
Receiver Address inputs 

The logic level on these inputs as shown in Tables 1 
through 6, selects the receiver output frequency, fR 

A high-level input strobe loads the receiver address 
(RA, Rs, Re, Ro) into the receiver address register 
This input may be strobed or t1ard wired to + SV 

+ 12 volt Supply 

Internally bonded Do not connect anything to this 
pin 

Ground 

A high-level input strobe loads the transmitter address 
(TA, Ts, Tc, To) into the transmitter address register 
This input may be strobed or hard wired to + 5V 

The logic level on these inputs, as shown in Tables 1 
through 6, selects the transmitter output frequency, fr 

This output runs at a frequency selected by the 
Transmitter Address inputs 

This input receives the other pin of the crystal 
package or the other polarity of the external input 

CRYSTAL OPERATtON EXTERNAL INPUT OPERATION 
BR1941 BR1941 

D 74XX> 1]" TTL 

I 

74XX - TOTEM POLE OR OPEN COLLECTOR OUTPUT 

CRYSTAUCLOCK OPTIONS 

Positive Voltage on any Pin, with respect to ground + 20.0V 

Negative Voltage on any Pin, with respect to ground - 0 .3V 

Storage Temperature (plastic package) -55°C to + 125°C 
(cerdip package and ceramic package) -65°C to+ 150°G 

Lead Temperature (Soldering, 10 sec) +325°C 

·stresses above those listed may cause permanent damage to the device This is a stress 
rating only and Functional Operation of the device at these or at any other condition 
above those indicated in the operational sections of this specification are not implied 

390 



ELECTRICAL CHARACTERISTICS 

(TA = 0°C to + 70°C, Vee = + 5V ± 5%, Voo = + 12V ± 5%, unless otherwise noted) 

PARAMETER MIN TYP MAX UNIT COMMENTS 

DC CHARACTERISTICS 

INPUT VOLTAGE LEVELS 
Low-level, VIL 08 V See Note 1 
High-level, VIH Vcc-15 Vee V 

OUTPUT VOLTAGE LEVELS 
Low-level, VoL 04 V IOL = 32mA 
High-level, VoH vcc-15 4.0 V IOH = 100µA 

INPUT CURRENT 
Low-level, lIL 03 mA VIN = GND, excluding XTAL inputs 

INPUT CAPACITANCE 
All Inputs, C1N 5 10 pf VIN = GND, excluding XTAL inputs 

INPUT RESISTANCE 
Crystal Input, RxTAL 11 KQ Resistance to ground for 

Pin 1 and Pin 18 

POWER SUPPLY CURRENT 

ice 20 60 mA 
loo 20 70 mA 

AC CHARACTERISTICS TA= +25°C 

CLOCK FREQUENCY SeeNote2 

PULSE WIDTH (Tpw) 
Clock 50% duty cycle ± 10% See Note 2 
Receiver strobe 150 DC ns 
Transmitter strobe 150 DC ns 

INPUT SET-UP TIME (TsET-UP) 
Address 50 ns See Note3 

OUTPUT HOLD TIME(THOLD) 
Address 50 ns 

NOTE 1: BR1941 - XTAUEXT inputs are either TTL compatible or crystal compatible See crystal specification in Ap
plications Information section. 
All inputs except XTAUEXT have internal pull-up resistors 

NOTE 2: Refer to frequency option tables for maximum input frequency on XTAUEXT pins 
Typical Clock Pulse width is 1/2xCL 

NOTE 3: Input set-up time can be decreased to ;.o ns by increasing the minimum strobe width by 50 ns to a total of 200 ns 

OPERATION 

Standard Frequencies 

Choose a Transmitter and Receiver frequency from the 
table below. Program the corresponding address into TA
TD and RA-RD respectively using strobe pulses or by hard 
wiring the slrobe and address inputs 

391 

Non-Standard Frequencies 

To accomplish non-standard frequencies do one of the 
following: 

Choose a crystal that when divided by the BR1941 
generates the desired frequency 
Cascade devices by using the frequency outputs as an 



Ill 
:.ti ..... 
CD 
A ..... 
'@ ..... 
$ 

input to the XTAUEXT inputs of ttie subsequent 
BR1941 

Consult the factory for possible changes via ROM mask 
reprogramming 

FREQUENCY OPTIONS 
TABLE 1 CRYSTAL FREQUENCY = 50688 MHZ 

Transmit/Receive Baud Duty 
Address Rate Theoretical Actual Percent Cycle 

D C 8 A f16X Clock\ Free. lkHz\ Frea. lkHzl Error % Divisor 
0 0 0 0 50 08 08 - 50150 6336 
0 0 0 1 75 1,2 1.2 50150 4224 
0 0 1 o 110 1 76 1 76 50150 2880 
0 o 1 1 134.5 2.152 2 1523 0 016 50150 2355 
o 1 o o 150 24 24 - 50150 2112 
o 1 o 1 300 48 48 - 50150 1056 
0 1 1 o 600 9.6 9.6 50150 528 
0 1 1 1 1200 19 2 19 2 - 50150 264 
1 0 0 o 1800 28 8 28.8 - 50150 176 
1 o o 1 2000 32 0 32.081 o 253 50150 158 
1 o 1 o 2400 38 4 38 4 50150 132 
1 o 1 1 3600 57 6 57 6 - 50150 88 
1 1 o 0 4800 76.8 76.8 - 50150 66 
1 1 o 1 7200 115 2 115 2 - 50150 44 
1 1 1 u !:lbUU 1:JJ b !:>J 0 - .. o,s.2 33 
1 1 1 1 19,200 307.2 316.8 3.125 50150 16 

BR1941-00 

TABLE 2 CLOCK FREQUENCY 2 76480 MHZ 

Transmit/Receive Baud Duty 
Address Rate Theoretical Actual Percent Cycle 

D C 8 A 116X Clock\ Frea. lkHzl Frea. lkHzl Error % Divisor 
o o o o 50 08 08 - 50150 3456 
0 0 o 1 75 1.2 1.2 50150 2304 
0 0 1 0 110 1 76 1 76 -0 006 50150 1571 
o o 1 1 134.5 2.152 2.152 -0 019 50150 1285 
0 1 o o 150 24 24 - 50150 1152 
o 1 o 1 200 32 32 - 50150 864 
o 1 1 0 300 48 48 50150 576 
0 1 1 1 600 9.6 9.6 - 50150 288 
1 0 o o 1200 19 2 19 2 - 50150 144 
1 o 0 1 1800 28 8 28 8 50150 96 
1 o 1 o 2000 32 o 32.15 + o 465 50150 86 
1 o 1 1 2400 38 4 38 4 - 50150 72 
1 1 o o 3600 57 6 57 6 50150 48 
1 1 o 1 4800 76.8 76.8 - 50150 36 
1 1 1 o 9600 153 6 153 6 50150 18 
1 1 1 1 19,200 307.2 307.2 - 50150 9 

BR1941-02 

TABLE 3 CRYSTAL FREQUENCY 6018305 MHZ 

Transmit/Receive Baud Duly 
Address Rate Theoretical Actual Percent Cycle 

D C 8 A 116X Clockl Frea. lkHzl Frea. lkHzl Error % Divisor 
o 0 o o 50 08 7999 o 50150 7523· 
o o o 1 75 1.2 1 2000 o 50150 5015· 
o o 1 o 110 1 76 1 7597 o 50150 3420 
o o 1 1 134.5 2.152 2 1517 o 50150 2797· 
o 1 o o 150 24 2 3996 o 50150 2508 
0 1 o 1 200 32 31995 o 50150 1881 • 
o 1 1 0 300 48 4 7993 o 50150 1254 
o 1 1 1 600 9.6 9.5986 o 50150 627· 
1 0 o 0 1200 19 2 19 2279 +0.14 50150 31.3' 
1 0 o 1 1800 28 8 28 7959 o 50150 209" 
1 0 1 0 2000 32 o 32 0125 0 50150 188 
1 o 1 1 2400 38 4 38 3334 -017 50150 157" 
1 1 o o 3600 57 6 57 8687 +046 50150 104 
1 1 o 1 4800 76,8 77.1583 +O 46 50150 78 
1 1 1 0 9800 153 6 154 3166 + 0 46 50150 39• 
1 1 1 1 19,200 307.2 300.9175 - 2.04 50150 20 

BR1941-03 

392 



TABLE 4 CLOCK FREQUENCY 5 52960 MHZ 

TransmlURecelve Baud 
Address Rate Theoretical Actual 

D C B A (16X Clock) Freo, (kHzl Freo. (kHzl 
0 0 0 0 50 1 6 1 6 
0 0 0 1 76 2.4 2.4 
0 0 1 0 110 3.52 3.52 
0 0 1 1 134.5 4 304 4 303 
0 1 0 0 150 48 48 
0 1 0 1 200 64 64 
0 1 1 0 300 9.6 9.6 
0 1 1 1 600 19 2 19 2 
1 0 0 0 1200 38 4 38 4 
1 0 0 1 1800 57 6 57 6 
1 0 1 0 2000 64 0 64 3 
1 0 1 1 2400 76.8 76.8 
1 1 0 0 3600 115 2 115 2 
1 1 0 1 4800 153 6 153 6 
1 1 1 0 9600 307 2 307 2 
1 1 1 1 19,200 614.4 614.4 

BR1941·04 

TABLE 5. CRYSTAL FREQUENCY 4 9152 MHZ 

Trans ml I/Receive Baud 
Address Rate Theoretical Actual 

D C B A (32X Clockl Frea. !kHzl Frea. (kHz) 
0 0 0 0 50 08 OB 
0 0 0 1 75 1.2 1.2 
0 0 1 0 110 1 76 1.7598 
0 0 1 1 134.5 2.152 2.152 
0 1 0 0 150 24 24 
0 1 0 1 300 48 48 
0 1 1 0 600 9.6 9.6 
0 1 1 1 1200 19 2 19 2 
1 0 0 0 1800 28 B 28 7438 
1 0 0 1 2000 32 0 31.9168 
1 0 1 0 2400 38 4 38.4 
1 0 1 1 3600 57 6 57.8258 
1 1 0 0 4800 76.8 76.8 
1 1 0 1 7200 115 2 114.306 
1 1 1 0 9600 153 6 153 6 
1 1 1 1 19,200 307.2 307.2 

BR1941-05 

TABLE 6 CRYSTAL FREQUENCY 5 0688 MHZ 

Transmit/Receive Baud 
Address Rate Theoretical Actual 

D C B A !32X Clockl Frea. (kHzl Freo. fkHzl 
0 0 0 0 50 1 6 16 
0 0 0 1 75 2.4 2.4 
0 0 1 0 110 3.52 3.52 
0 0 1 1 134.5 4 304 4 303 
0 1 0 0 150 48 48 
0 1 0 1 200 64 64 
0 1 1 0 300 9.6 9.6 
0 1 1 1 600 19 2 19 2 
1 0 0 0 1200 38 4 38 4 
1 0 0 1 1800 57 6 57 6 
1 0 1 0 2400 76.8 76.8 
1 0 1 1 3600 115 2 115 2 
1 1 0 0 4800 153 6 153 6 
1 1 0 1 7200 230 4 230 4 
1 1 1 0 9600 307 2 298.16 
1 1 1 1 19,200 614.4 633.6 

•When the duty cycle 1s not exactly 50% It 1s 50% 10% 

BR1941·06 

393 

Duly 
Percent Cycle 

Error % 
- 50/50 
- 50/50 

-0006 50/50 
-0019 50/50 

- 50/50 
- 50/50 
- 50/50 
- 50/50 
- 50/50 
- 50150 

+0465 50/50 
- 50/50 
- 50/50 
- 50/50 

50/50 
- 50/50 

Duly 
Percent Cycle 

Error % 
- 50/50 
- 50/50 

-001 
- 50/50 
- 50/50 
- 50/50 
- 50150 
- 50/50 

-0 19 
-0 26 50/50 

50/50 
0 39 
- 50/50 

-0 77 
- 50/50 
- 50/50 

Duty 
Percent Cycle 

Error % 

- 50/50 
- 50/50 
- 50/50 
026 50/50 

50/50 
- 50/50 
- 50/50 
- 50/50 
- 50/50 
- 50/50 
- 50/50 
- 50/50 
-
- 50/50 

2 941 
3.125 50/50 

Divisor 
3456 
2304 
1571 
1285 
1152 
864 
576 
288 
144 
96 
86 
72 
48 
36 
18 
9 

Divisor 
6144 
4096 
2793 
2284 
2048 
1024 
512 
256 
171 
154 
128 
85 
64 
43 
32 
16 

Divisor 
3168 
2112 
1440 
1178 
1056 

792 
528 
264 
132 

88 
66 
44 
33 
22 
17 
B 

co 
:x, .... 
'.f .... 
cii 
0 .... 
.$ 



CRYSTAL SPECIFICAllONS 

User must specify termination (pin, wire, other) 
Frequency - See Tables 1-6 
Temperature range0'C to+ 70'C 
Serles resistance,; SQQ 

Series resonant 
Overall tolerance ± .01 % 

CRYSTAL MANUFACTURERS (Partial List) 

American Time Products Div 
Frequency Control Producls, Inc 
61-20 Woodside Ave 
Woodside, New York 11377 
(212)458-5811 

Bliley Electric Co 
2545 Grandview Blvd 
Erie, Pennsylvania 16506 
(814) 838-3571 

M-tron Ind Inc 
PO. Box630 
Yankton, South Dakota 57078 
(605) 665-9321 

Erie Frequency Control 
453 Lincoln St 
Calisle, Pennsylvania 17013 
(714) 249-2232 

APPLICATIONS INFORMATION 

OPERATION WITH A CRYSTAL 

The BA1941 Baud Rate Generator may be driven by either a 
crystal or TTL level clock When using a crystal, the wave
form that appears at pins 1 (XTAL/EXT 1) and 18 (XTAUEXT 
2) does not conform to the normal TTL limits of VIL,; 0.BV 
and VIH ;, 2 0V Figure 1 illustrates a typical crystal 
waveform when connected to a BA1941 

Since the D.C level of the waveform causes the least 
positive point to typically be greater than 0.8V, the BR1941 
is designed to look for an edge, as opposed to a TTL level 
The XTAUEXT logic triggers on a rising edge of typically 1V 
In magnitude. This allows the use of a crystal without any 
additional components 

OPERATIONS WITH TTL LEVEL CLOCK 

With clock frequencies in the area ol 5 MHz, significant 
overshoot and undershoot ("ringing") can appear at pins 1 
and/or 18 The BA1941, may, at times, be triggered on a 
rising edge of an overshoot or undershoot waveform, 
causing the device to effectively "double-trigger" This 
phenomenon may result as a twice expected baud rate, or 
as an apparent device failure. Figure 2 shows a typical 
waveform that exhibits the "ringing" problem 

The design methods required to minimize ringing include 
the following: 

Minimize the PC trace length At 5 MHz, each inch of 
trace can add significantly to overshoot and undershoot 
Match impedances at both ends of the trace For 
example, a series resistor near the BA1941 may be 
helpful 
A uniform impedance is important This can be ac
complished through the use of: 

394 

a parallel ground lines 
b evenly spaced ground lines crossing the trace on the 

opposite side of PC board 
c an inner plane of ground, e g, as in a four layered PC 

board 

In the event that ringing exists on an already finished 
board, several techniques can be used to reduce it These 
are: 

Add a series resistor to match impedance as shown in 
Figure 3 
Add pull-up/pull-down resistor to match impedance, as 
shown in Figure 4 
Add a high speed diode to clamp undershoot, as shown 
in Figure 5 

The method that is easiest to implement in many systems 
is method 1, the series resistor The series resistor will 
cause the DC level to shill up, but that does not cause a 
problem since the BA1941 is triggered by an edge, as 
opposed to a TTL level 

The BR1941 Baud Rate Generator can save both board 
space and cost in a communications system By choosing 
either a crystal or a TTL level clock, the user can minimize 
the logic required to provide baud rate clocks in a given 
design 

POWER LINE SPIKES 

Voltage transients on the AC power line may appear on the 
DC power output If this possibility exists, ii is suggested 
that one by-pass capacitor is used between + 5V and GND 
and another between + 12V and GND 



Figure 1 TYPICAL CRYSTAL WAVEFORM 

Al 

BR1941 

A2 

Figure 2 TYPICAL "RINGING" WAVEFORM 

Typical Values 
A1 - A2 - 3311 

Figure 3 SERIES RESISTOR TO MATCH IMPEDANCE 

, 5V 

Al 

A2 

BR1941 

Typical Values 
Al A3 - ? 7K 
R2 - A4., 3 3K 

Figure 4 PULL-UP/PULL-DOWN RESISTORS TO MATCH IMPEDANCE 

BA1941 

Figure 5 HIGH-SPEED DIODE TO CLAMP UNDERSHOOT 

See page 725 for ordering information 

395 



CJJ 
::c .... 
'.g .... 
en 
C .... 
.9 

ln!ormation furnished by Western 01g1tal Corporation 1s believed to be accurate and reliable However no respons1bihty 1s assumed by Western D1g1tal 
Corporation lor its use, nor lor any m!nngements of patents or olher rights of third parties which may result from its use No license is granted by 
impl1cat1on or otherwise under any patent or patent nghts of Western D1g1ta! Corporal!on Weslern Digital Corporation reserves the right to change 
spec1f1cahons al anytime without notice 

396 Prinled •n USA 



WESTERN DIGITAL 
C 0 R p 0 R A T 0 N 

WD1943(8116)/WD1945(8136) Dual Baud Rate Clock 

FEATURES 
• 16 SELECTABLE BAUD RATE CLOCK FREQUENCIES 

• OPERATES WITH CRYSTAL OSCILLATOR OR EX 
TERNALLY GENERATED FREQUENCY INPUT 

• ROM MASKABLE FOR NON-STANDARD FREQUENCY 
SELECTIONS 

• INTERFACES EASILY WITH MICROCOMPUTERS 

• OUTPUTS A 50% DUTY CYCLE CLOCK WITH O 01 % 
ACCURACY 

• 6 DIFFERENT FREQUENCY/DIVISOR PAIRS 
AVAILABLE 

•SINGLE +5V POWER SUPPLY 

• COMPATIBLE WITH BR1941 

• TTL, MOS COMPATIBILITY 

• WD1943 IS PIN COMPATIBLE TO THE COM8116 
• WD19/45 IS PIN COMPATIBLE TO THE COM8136 AND 

COM5036 (PIN 9 ON WD1945 IS A NO CONNEcn 

XTAL/EXT 1 

+ 5V 

NC 

18 

17 

16 

15 

5 W~1i4314 

6 W01945 13 

PIN CONNECTIONS 

XTAUEXT 2 

'T 

TA 

Ta 

Tc 

To 

STT 

GND 

NC(1943) 
[/4{1945j 

GENERAL DESCRIPTION 
The WD1943/45 is an enhanced version of the BR1941 Dual 
Baud Rate Clock The WD1943/45 is a combination Baud 
Rate Clock Generator and Programmable Divider It is 
manufactured in N-channel MOS using silicon gate 
technology This device is capable of generating 16 ex
ternally selected clock rates whose frequency is deter
mined by either a single crystal or an externally generated 
input clock The WD1943/45 is a programmable counter 
capable of generating a division by any integer from 4 to 
215 - 1, inclusive 

397 

The WD1943/45 is available programmed with the most 
used frequencies in data communication Each frequency 
is selectable by strobing or hard wiring each of the two sets 
of four Rate Select inputs Other frequencies/division rates 
can be generated by reprogramming the internal ROM 
coding through a MOS mask change Additionally, further 
clock division may be accomplished through cascading of 
devices The frequency output is fed into the XTAUEXT 
input on a subsequent device 

The WD1943/45 can be driven by an external crystal or by 
TTL logic 

TA~= TB 

TC ' 

TD 
H 

STT---

XTAU 
EXT1 

XTAU_ 
EXT2 

RA 

RB 

RC 

RO 

OSCILLATOR 

FREQUENCY ! 
DECODE 

AND 
CONTROL 

FREQUENCY 
DECODE 

AND 
CONTROL 

FREQUENCY 
SELECT 

ROM 

FREQUENCY 
SELECT 

ROM 

BLOCK DIAGRAM 

'" 



PIN DESCRIPTION 

PIN NUMBER SYMBOL NAME FUNCTION 

1 

2 

3 

4-7 

8 

9 

10 

11 

1? 

13-16 

17 

18 

STf\OBE 
isrnrsrn 

XTAUEXT1 

Vee 

iR 

RA, Rs, Re, Ro 

STR 

NC 

NC(1943) 
1/4(1945) 

GNO 

STT 

To, Tc, Ts, TA 

fr 

XTAL/EXT2 

Crystal or 
External Input 1 

Power Supply 

Receiver Output 
Frequency 

Receiver Address 

Strobe-Receiver 
Address 

No Connection 

No Connection 
freq/4 Output 

Ground 

Strobe-Transmitter 
Address 

Transmitter 
Address 

Transmitter 
Output 
Frequency 

Crystal or 
External 
lnput2 

This input receives one pin of the crystal package or one 
polarity of the external input 

+ 5 volt Supply 

This output runs at a frequency selected by the Receive 
Address inputs 

The logic level on these inputs as shown in Table 1 thnu 6, 
selects the receiver output frequency, fR 

A high-level input strobe loads the receiver address (RA, Rs, 
Re, Ro) into the receiver address register This input may be 
strobed or hard wired to + 5V 

No Internal Connection 

No Internal Connection 
XTAL 1 input freq divided by four 

Ground 

A hioh-level input strobe loads the transmitter address (TA, 
Ts, Tc, To) into the transmitter address register This input 
may be strobed or hard wired to + 5V 

The logic level on these inputs, as shown in Table 1 thnu 6, 
selects the transmitter output frequency, tr 
This output runs at a frequency selected by the Transmitter 
Address inputs 

This input receives the other pin of the crystal package or the 
other polarity of the external input 

CRYSTAL OPERATION 
WD1943/45 

EXTERNAL INPUT OPERATION 
WD1943l45 

lm~P r-- lHQCO SEE NOTE I 
PAGEJ 

"" 
ADOAESS 

"' ADDRESS IIEED DULY BE VALID DURING THE LAST W'.X TOTEM POLE OR OPEN COLLECTOR OUTPUT 
TPW TIME OF THE It/PUT STROSE 

CONTROL TIMING CRYSTAUCL.OCK OPTIONS 

ABSOLUTE MAXIMUM RATINGS 

Positive Voltage on any Pin, with respect to ground + 7 OV 

Negative Voltage on any Pin, with respect to ground -0.3V 

Storage Temperature (plastic package) -55"C to + 125"C 
(Cerdip package and Ceramic package) -65"C to + 150"C 

Lead Temperature(Soldering, 10 sec) + 325"C 

'Stresses above those listed may cause permanent damage to the device .. This is a stress 
rating only and Functional Operation of the device at these or at any other condition 
above those indicated in the operational sections of tt1is specification are not implied 

398 



ELECTRICAL CHARACTERISTICS 'lTA = 0°C to + 70°C, Vee= + 5V ± 5% standard) 

PARAMETER MIN TYP MAX UNIT COMMENTS 

DC CHARACTERISTICS 

INPUT VOLTAGE LEVELS 
low-level, V1L 08 V See Note1 
High-level, VIH 20 Vee V 

OUTPUT VOLTAGE LEVELS 
Low-level, VoL 04 V IOL = 32 mA 
High-level, VOH Vcc-1 s 40 V loH = 100µA 

INPUT CURRENT -10 µA VIN = Vee STR (8) and STT (12) 
High-level, lIH 10 µA VIN = GND Only 
Low-level, IIL 300 µA VIN = GND (All inputs except 

XTAL, STR and STI) 
Low-level, IIL 10 µa VIN = GND STR, STT 

INPUT CAPACITANCE 
All Inputs, CIN 5 10 pf VIN = GND, excluding XTAL inputs 

EXT INPUT LOAD 4 5 Series 7 400 unit loads 

INPUT RESISTANCE 
Crystal Input, RXTAL 11 KQ Resistance to ground for 

Pin 1 and Pin 18 
POWER SUPPLY CURRENT 40 80 mA 

ice 

AC CHARACTERISTICS TA= +25°C 

CLOCK FREQUENCY See Note2 

PULSE WIDTH (Tpw) 
Clock 50% Duty Cycle ± 10% See Note 2 
Receiver strobe 150 DC ns See Note 3 
Transmitter strobe 150 DC ns See Note3 

INPUT SETUP TIME (TSET-UP) 
Address 50 ns See Note3 

OUTPUT HOLD TIME lTHOLD) 
Address 50 ns 

STROBE TO NEW FREQUENCY 
DELAY 6 CLK 

NOTE 1: XTAUEXT inputs are either TTL compatible or crystal compatible See crystal spec1f1cat1on ,n 
Applications Information section 
All inputs except XTAL, STR and STT have internal pull-up resistors 

NOTE 2: Refer to frequency option tables for maximum input frequency on XTAUEXT pins 
Typical clock pulse width is 1/2 x CL 

NOTE 3: Input set-up time can be decreased to >O ns by increasing the minimum strobe width (50 ns) to a total of 200 ns 
T A·D and RA-D have internal pull-up resistors 

OPERATION 

Standard Frequencies 

Choose a Transmitter and Receiver frequency from the 
table below Program the corresponding address Into TA-TD 
and RA-RD respectively using strobe pulses or by hard 
wiring the strobe and address inputs 

399 

Non-Standard Frequencies 

To accomplish non-standard frequencies do one of the 
following: 

Choose a crystal that when divided by the WD1943 
generates the desired frequency 

2 Cascade devices by using the frequency outputs as an 
input to the XTAUEXT inputs of the subsequent 
WD1943/45 
Consult the factory for possible changes via ROM mask 
reprogramming 



:E 
C .... 
(0 

! .... ..... 
$ 

i 
C .... 
(0 

t .... 
$ 

FREQUENCY OPTIONS 

Transmit/Receive 
Address 

D C B 
0 0 0 
0 0 0 
0 0 1 
0 0 1 
0 1 0 
0 1 0 
0 1 1 
0 1 1 
1 0 0 
1 0 0 
1 0 1 
1 0 1 
1 1 0 
1 1 0 
1 1 1 
1 1 1 

Transmit/Receive 
Address 

D C B 
0 0 0 
0 0 0 
0 0 1 
0 0 1 
0 1 0 
0 1 0 
0 1 1 
0 1 1 
1 0 0 
1 0 0 
1 0 1 
1 0 1 
1 1 0 
1 1 0 
1 1 1 
1 1 1 

Transmit/Receive 
Address 

D C B 
0 0 0 
0 0 0 
0 0 1 
0 0 1 
0 1 0 
0 1 0 
0 1 1 
0 1 1 
1 0 0 
1 0 0 
1 0 1 
1 0 1 
1 1 0 
1 1 0 
1 1 1 
1 1 1 

TABLE l CRYSTAL FREQUENCY 5 0688 MHZ 

Baud Duty 
Rate Theoretics! Actual Percent Cycle 

A 116X Clockl Frea. lkHzl Frea. lkHzl Error % Dlvl•or 
0 50 08 08 - 50150 6336 
1 75 1.2 1.2 - 50150 4224 
0 110 1.76 1.76 - 50150 2880 
1 134.5 2.152 21523 0,016 50150 2355 
0 150 2.4 2.4 - 50150 2112 
1 300 48 48 - 50150 1056 
0 600 9.6 9.6 - 50150 528 
1 1200 19 2 19 2 - 50150 264 
0 1800 28 8 28.8 - 50150 176 
1 2000 32 0 32.081 0 253 50150 158 
0 2400 38.4 384 - 50150 132 
1 3600 57.6 576 - 50/50 88 
0 4800 76.8 76.8 - 50/50 66 
1 7200 1152 115.2 - 50150 44 
0 9600 153 6 1536 - 48152 33 
1 19 200 307.2 316.8 3.125 50150 16 

WD1943-00 orWD1945-00 

TABLE 2 CLOCK FREQUENCY = 2.76480 MHZ 

Baud Duty 
Rate Theoretical Actual Percent Cycle 

A 116X Clock\ Frea. lkHzl Frea. {kHz\ Error % Divisor 
0 50 08 0.8 - 50150 3456 
1 75 1.2 1.2 - 50150 2304 
0 110 1.76 1.76 -0.006 50150 1571 
1 134.5 2.152 2.152 -0.019 50150 1285 
0 150 24 24 - 50150 1152 
1 200 32 32 - 50/50 864 
0 300 48 48 - 50/50 576 
1 600 9.6 9.6 - 50/50 288 
0 1200 19 2 192 - 50150 144 
1 1800 28 8 28.8 - 50150 96 
0 2000 32.0 32.15 +O 465 50150 86 
1 2400 38.4 38 4 - 50150 72 
0 3600 57.6 576 - 50150 48 
1 4800 76.8 76.8 - 50/50 36 
0 9600 153.6 1536 - 50150 18 
1 19200 307.2 307.2 - 50150 9 

WD1943-02 or WD1945-02 

TABLE 3 CRYSTAL FREQUENCY = 6.018305 MHZ 

Baud Duty 
Rate lheoretlcal Actual Percent Cycle 

A 116X Clock\ Frea. lkHzl Frea. (kHz\ Error % Divisor 
0 50 0.8 .7999 0 50150 7523' 
1 75 1.2 12000 0 50150 5015' 
0 110 1.76 1 7597 0 50150 3420 
1 134.5 2.152 2.1517 0 50150 2797' 
0 150 24 23996 0 50150 2508 
1 200 32 31995 0 50/50 1881' 
0 300 4.8 4.7993 0 50/50 1254 
1 600 9.6 9.5986 0 50/50 627' 
0 1200 19 .. 2 19 2279 +0.14 50150 31.3' 
1 1800 28 .. 8 28 7959 0 50/50 209' 
0 2000 32 0 32 0125 0 50/50 188 
1 2400 38.4 38 3334 -017 50/50 157" 
0 3600 57 6 57 8687 +0.46 50150 104 
1 4800 76.8 77.1583 +046 50150 78 
0 9800 153.6 154 3166 +0.46 50150 39• 
1 19 200 307.2 300.9175 -2.04 50/50 20 

WD1943-03 or WD1945-03 

400 



TABLE 4 CLOCK FREQUENCY 5 52960 MHZ 

Transmit/Receive Baud 
Address Rate Theorellcal Actual 

D C B A 132X Clock) Frea. (kHz) Frea. lkHzl 
0 0 0 0 50 16 1 6 
0 0 0 1 75 2.4 2.4 
0 0 1 0 110 3.52 3.52 
0 0 1 1 134,5 4 304 4 303 
0 1 0 0 150 48 48 
0 1 0 1 200 64 64 
0 1 1 0 300 9,6 9,8 
0 1 1 1 600 19 2 192 
1 0 0 0 1200 38 4 38 4 
1 0 0 1 1800 57 6 57 6 
1 0 1 0 2000 64 0 64.3 
1 0 1 1 2400 76.8 76.8 
1 1 0 0 3600 115 2 115.2 
1 1 0 1 4800 153 6 153 6 
1 1 1 0 9600 307 2 307 2 
1 1 1 1 19200 614.4 614.4 

Duty 
Percent Cycle 

Error % 

- 50/50 
- 50/50 

-0006 50/50 
-0019 50/50 - 50/50 

- 50/50 
- 50150 
- 50150 
- 50150 
- 50150 

+O 465 50150 
- 50/50 
- 50150 
- 50150 
- 50150 
- 50150 

Divisor 
3456 
2304 
1571 
1285 
1152 
864 
576 
288 
144 
96 
86 
72 
48 
36 
18 

9 

:e 
C ... 
(0 

i ... ... 
$ 

iE 
C ... 
(0 

! ... 
(,l 

WD1943-04 orWD1945-04 $ 

TABLE 5. CRYSTAL FREQUENCY = 4 9152 MHZ 

Transmit/Receive Baud Duty 
Address Rate Theorellcal Actual Percent Cycle 

D C B A 116X Clock\ Frea. lkHz) Frea. lkHzl Error % Divisor 
0 0 0 0 50 08 08 - 50/50 6144 
0 0 0 1 75 1.2 1.2 - 50/50 4096 
0 0 1 0 110 1 76 1.7598 -001 2793 
0 0 1 1 134,5 2.152 2.152 - 50150 2284 
0 1 0 0 150 24 24 - 50/50 2048 
0 1 0 1 300 48 48 - 50/50 1024 
0 1 1 0 600 9,6 9,6 - 50150 512 
0 1 1 1 1200 19 2 19.2 - 50150 256 
1 0 0 0 1800 28 8 28 7438 -019 171 
1 0 0 1 2000 32 0 31,9168 -0 26 50/50 154 
1 0 1 0 2400 38 4 38,4 - 50/50 128 
1 0 1 1 3600 57.6 57.8258 0.39 85 
1 1 0 0 4800 76.8 76.8 - 50150 64 
1 1 0 1 7200 115 2 114.306 -0 77 43 
1 1 1 0 9600 153 6 1536 - 50150 32 
1 1 1 1 19 200 307.2 307,2 - 50150 16 

WD1943-05 or WD1945-05 

TABLE 6. CRYSTAL FREQUENCY 50688 MHZ 

Transmit/Receive Baud Duty 
Address Rate Theoretical Actual Percent Cycle 

D C B A 132X Clock) Frea. (kHz) Frea. (kHz) Error % Divisor 
0 0 0 0 50 16 1 6 - 50/50 3168 
0 0 0 1 75 2.4 2.4 - 50150 2112 
0 0 1 0 110 3.52 3.52 - 50/50 1440 
0 0 1 1 134,5 4 304 4.303 026 50/50 1178 
0 1 0 0 150 48 48 - 50/50 1056 
0 1 0 1 200 64 64 - 50/50 792 
0 1 1 0 300 9,6 9,6 - 50/50 528 
0 1 1 1 600 19.2 192 - 50/50 264 
1 0 0 0 1200 38.4 38 4 - 50/50 132 
1 0 0 1 1800 57 6 57 6 - 50/50 88 
1 0 1 0 2400 76,8 76,8 - 50/50 66 
1 0 1 1 3600 115 2 115 2 - 50/50 44 
1 1 0 0 4800 153 6 153 6 - 33 
1 1 0 1 7200 230 4 230 4 - 50150 22 
1 1 1 0 9600 307 2 298.16 2 941 17 
1 1 1 1 19200 614.4 633,6 3.125 50/50 8 

·When the duty cycle Is not exactly 50% it Is 50% ± 10% 

WD1943-06 orWD1945-06 

401 



APPLICATIONS INFORMATION 

OPERATION WITH A CRYSTAL 

The WD1943/45 Baud Rate Generator may be driven by 
either a crystal or TTL level clock When using a crystal, the 
wavefom1 that appears at pins 1 (XTAL/EXT 1) and 18 
(XTAL/EXT 2) does not conform to the normal TTL limits of 
VIL ,;; 0 8V and VIH ;. 2.0V Figure 1 illustrates a typical 
crystal waveform when connected lo a WD1943/45 

Since the DC level of the waveform causes the least 
positive point to typically be greater than 0 8V, the 
WD1943/45 is designed to look for an edge, as opposed lo a 
TTL level The XTAL/EXT logic triggers on a rising edge of 
typically 1V in magnitude This allows the use of a crystal 
without any additional components 

OPERATIONS WITH TTL LEVEL CLOCK 

With clock frequencies in the area of 5 MHz, significant 
overshoot and undershoot ("ringing") can appear at pins 1 
and/or 18 The clock oscilator may, at times be triggered on 
a rising edge of an overshoot or undershoot waveform, 
causing the device lo effectively ·'double-trigger·· This 
phenomenon may result as a twice expected baud rate, or 
as an apparent device failure Figure 2 shows a typical 
waveform that exhibits the "ringing" problem 

The design methods required to minimize ringing Include 
the following: 

Minimize the PC trace length Al 5 MHz, each Inch of 
trace can add slgnlflcantly to overshoot and undershoot 

2 Match impedances at both ends of the trace For 
example, a series resistor near the device may be 
helpful 

3. A uniform Impedance is Important This can be ac
complished through the use of: 
a parallel ground lines 
b. evenly spaced ground lines crossing the trace on the 

opposite side of PC board 
c. an Inner plane of ground, e g., as In a four layered PC 

board 

In the event that ringing exists on an already finished 
board, several techniques can be used to reduce It These 
are: 

Add a series resistor to match Impedance as shown in 
Figure 3. 

2 Add pull-up/pull-down resistor to match Impedance, as 
shown in Figure 4 

3, Add a high speed diode to clamp undershoot, as shown 
in Flgure5 

402 

The method that is easiest to implement in many systems 
is method 1, the series resistor The series resistor will 
cause the DC level to shift up, bul that does not cause a 
problem since the OSC is triggered by an edge, as opposed 
to a TTL level 

The 1943145 Baud Rate Generator can save both board 
space and cost in a communications system By choosing 
eitt1er a crystal or a TTL level clock, the user can minimize 
the logic required to provide baud rate clocks in a given 
design 

POWER LINE SPIKES 

Voltage transients on the AC power line may appear on the 
DC power output If this possibility exists, It Is suggested 
that a by-pass capacitor is used between + 5V and GND 

CRYSTAL SPECIFICATIONS 

User must specify termination (pin, wire, other) 
Frequency - See Tables 1·6 
Temperature range 0'C to + 70'C 
Series resistance,:; 50Q 
Series resonant 
Overall tolerance ± O 01 °/o 

CRYSTAL MANUFACTURERS (Partial List) 

American Time Products Div 
Frequency Control Products, Inc 
61-20 Woodside Ave 
Woodside, New York 11377 
(213) 458-5811 

Bliley Electric Co 
2545 Grandview Blvd 
Erie, Pennsylvania 16508 
(814) 838-3571 

M-tron Ind Inc 
PO Box630 
Yankton, South Dakota 57078 
(605) 665-9321 

Erie Frequency Control 
453 Lincoln St 
Calisle, Pennsylvania 17013 
(714) 249-2232 



Figure 1. TYPICAL CRYSTAL WAVEFORM 

W01943/45 

Figure 2. TYPICAL "RINGING" WAVEFORM 
from TTL INPUT 

Typ,ca! Value~ 
R1 R;>"' 330 

Figure 3. SERIES RESISTOR TO MATCH IMPEDANCE 

W01943,145 

Figure 4. PULL-UP/PULL-DOWN RESISTORS TO MATCH IMPEDANCE 

Figure 5. HIGH-SPEED DIODE TO CLAMP UNDERSHOOT 

See page 725 for ordering information 

403 



lnlorma!lon furnished by Weslern Digital Corporahon is beheved 10 be accurate and reliable However, no responslbillty ls assumed by Western Digital 
Corporation for its use; nor lor any 1nfringements ol patents or other rights ol third parties which may result from lls use No license is granted by 
implication or otherwise under any paten! or patent ngh!s ot Western Digital Corporation Western Digital Corporation reserves the right to change 
specilicat1ons at anytime without not1ce 

404 



WESTERN DIGITAL 
CORPORATION 

FD179X-02 
Floppy Disk Formatter/Controller Family 

FEATURES 
• TWO VFO CONTROL SIGNALS - AG & VFOE 
• SOFT SECTOR FORMAT COMPATIBILITY 
• AUTOMATIC TRACK SEEK WITH VERIFICATION 
• ACCOMMODATES SINGLE AND DOUBLE DENSITY 

FORMATS 
IBM 3740 Single Density (FM) 
IBM System 34 Double Density (MFM) 
Non IBM Format for Increased Capacity 

• READMODE 
Single/Multiple Sector Read with Automatic Search or 

Entire Track Read 
Selectable 128,256,512 or 1024 Byte Sector Lengths 

• WRITEMODE 
Single/Multiple Sector Write with Automatic Sector 

Search 
Entire Track Write for Diskette Formatting 

• SYSTEM COMPATIBILITY 
Double Buffering of Data 8 Bit Bi-Directional Bus for 

Data, Control and Status 
OMA or Programmed Data Transfers 
All Inputs and Outputs are TTL Compatible 
On-Chip Track and Sector Registers/Comprehensive 

Status Information 

• PROGRAMMABLECONTROLS 
Selectable Track to Track Stepping Time 
Side Select Compare 

• INTERFACES TO WD1691 DATA SEPARATOR 
• WINDOW EXTENSION 
• INCORPORATES ENCODING/DECODING AND 

ADDRESS MARK CIRCUITRY 
• FD179214 IS SINGLE DENSITY ONLY 
• FD179517 HAS A SIDE SELECT OUTPUT 

179X-02 FAMILY CHARACTERISTICS 

FEATURES 1791 1792 1793 1794 1795 

Sina le DensitvlFMI X X X X X 
Double Densltv IMFMI X X X 
True Data Bus X X 
Inverted Data Bus X X X 
Write Precomn X X X X X 
Side Selection Output X 

APPLICATIONS 

8" FLOPPY AND 5¼" MINI FLOPPY CONTROLLER 
SINGLE OR DOUBLE DENSITY 
CONTROLLER/ FORMATTER 

1797 

X 
X 
X 

X 
X 

- RAWREAC) -
NC 

M 
cs 
RE 
•o ., 

··DALO 

"1791/3 = RG 1795n:: SSO 
'" 179317 TRUE BUS 

.. '179214 OPEN 

PIN DESIGNATION 

I< DATA{8l ) 

AO 

Al 
C 
0 cs 
M RE 
p 

u WE 

T 
E 

MR 179X 

R FLOPPY DISK 
CONTROLLER 

I FORMATTER 

N 
T •SV 

E 
R 
F 10K 10K 
A 
C 
E DAD 

INTRO 

CLK 

,,v -~ r ODEN V55 Voo Vee 

"' I I I 
+12 +5V 

FD179X SYSTEM BLOCK DIAGRAM 

RCLK 

RG/SSO 

LATE 

EARLY F 
L 

WD 0 

•5 
p 
p f lOK 

y 

WF/VFOE D 
I 

WPRT s 
K 

WG 
I iP N 

TROO T 
E 

READY A 

TG-t3 
F 
A 

STEP C 
E 

DIRC 

HLDr: 
I ONE SHOT I 

HL T (IF USED) 

T 
•SV 

November, 1982 



PIN OUTS 

PIN 
NUMBER PIN NAME 

1 NO CONNECTION 

19 MASTER RESET 

20 POWER SUPPLIES 

21 

40 

COMPUTER INTERFACE: 

2 WRITE ENABLE 

3 CHIP SELECT 

4 READ ENABLE 

5,6 REGISTER SELECT LINES 

7-14 DATA ACCESS LINES 

24 CLOCK 

38 DATA REQUEST 

39 INTERRUPT REQUEST 

FLOPPY DISK INTERFACE: 

15 

16 

17 

18 

STEP 

DIRECTION 

EARLY 

LATE 

SYMBOL 

NC 

Vss 

Vee 

Voo 

WE 

cs 

RE 

AO,A1 

CLK 

ORO 

INTRO 

STEP 

DIRC 

EARLY 

LATE 

FUNCTION 

Pin 1 is Internally connected to a back bias generator and 
must be left open by the user. 

A logic low (50 microseconds min.) on this input resets the 
device and loads HEX 03 into the command register. The Not 
Ready (Status Bit 7) is reset during MR ACTIVE. When MR Is 
brought to a logic high a RESTORE Command is executed, 
regardless of the state of the Ready signal from the drive. 
Also, HEX01 is loaded lntosectorregister. 

Ground 

+5V ±5% 

+12V ±5% 

A logic low on this input gates data on the DAL into the 
selected register when cs is low 

A logic low on this Input selects the chip and enables 
computer communication with the device. 

A logic low on this input controls the placement of data from a 
selected register on the DAL when CS is low 

These inputs select the register to receive/transfer data on the 
DAL lines under RE and WE control: 

CS A1 AO RE WE 

O O O Status Reg Command Reg 
O O 1 Track Reg Track Reg 
O 1 O Sector Reg Sector Reg 
0 1 1 Data Reg Data Reg 

Eight bit Bidirectional bus used for transfer of data, control, 
and status. This bus is receiver enabled by WE or transmitter 
enabled by RE Each line will drive 1 standard TTL load 

This input requires a free-running 50% duty cycle square wave 
clock for Internal timing reference, 2 MHz ± 1 % for 8" drives, 
1 MHz± 1% for mini-floppies. 

This open drain output Indicates that the DR contains 
assembled data in Read operations, or the DR Is empty in 
Write operations. This signal Is reset when serviced by the 
computer through reading or loading the DR In Read or Write 
operations, respectively. Use 10K pull-up resistor to + 5. 

This open drain output is set at the completion of any com
mand and is reset when the STATUS register is read or the 
command register is written to. Use 10K pull-up resistor to 
+5 

The step output contains a pulse for each step. 

Direction Output is active high when stepping in, active low 
when stepping out 

Indicates that the WRITE DATA pulse occuring while Early Is 
active (high) should be shifted early for write precom
pensation, 

Indicates that the write data pulse occurring while Late is 
active (high) should be shifted late for write precompensation. 

2 



PIN 
NUMBER PIN NAME 

22 TEST 

23 HEAD LOAD TIMING 

25 READ GATE 
(1791, 1792, 1793, 1794) 

25 SIDE SELECT OUTPUT 
(1795, 1797) 

26 READ CLOCK 

27 RAW READ 

28 HEAD LOAD 

SYMBOL 
TEST 

HLT 

RG 

sso 

RCLK 

HLD 

29 TRACK GREATER THAN 43 TG43 

30 

31 

32 

33 

34 

WRITE GATE 

WRITE DATA 

READY 

WRITE FAULT 
VFO ENABLE 

WG 

WD 

READY 

FUNCTION 
This input is used for testing purposes only and should be tied 
to + 5V or left open by the user unless interlacing to voice coil 
actuated steppers 

When a logic high is found on the HLT input the head is 
assumed to be engaged It is typically derived from a 1 shot 
triggered by HLD 

This output is used for synchronization of external data 
separators The output goes high after two Bytes of zeros in 
single density, or 4 Bytes of either zeros or ones in double 
density operation 

The logic level of the Side Select Output is directly controlled 
by the 'S' flag in Type II or Ill commands When U = 1, SSO is 
set to a logic 1 When U 0, SSO is set to a logic O The SSO 
is compared with the side information in the Sector I D Field 
If they do not compare Status Bit 4 (RNF) is set The Side 
Select Output is only updated at the beginning of a Type II or 
Ill command. It is forced to a logic O upon a MASTER RESET 
condition 

A nominal square-wave clock signal derived from the data 
stream rnust be provided to this input Phasing (i e RCLK 
transitions) relative to RAW READ is important but polarity 
(RCLK high or low) is not 

The data Input signal directly from the drive This input shall 
be a negative pulse for each recorded flux transition 

The HLD output controls the loading of the Read-Write head 
against the media 

This output informs the drive that the Read/Write head is 
positioned between tracks 44-76 This output is valid only 
during Read and Write Commands 

This output is made valid before writing is to be periorrned on 
the diskette 

A 200 ns (MFM) or 500 ns (FM) output pulse per flux transition 
WD contains the unique Address marks as well as data and 
clock in both FM and MFM formats 

This input indicates disk readiness and is sampled for a logic 
high before Read or Write commands are periormed If Ready 
is low the Read or Write operation is not periormed and an 
interrupt is generated. Type I operations are periorrned 
regardless of the state of Ready. The Ready input appears in 
inverted format as Status Register bit 7 

This is a bi-directional signal used to signify writing faults at 
the drive, and to enable the external PLO data separator. When 
WG = 1, Pin 33 functions as a WF input If WF = 0, any write 
command will immediately be terminated When WG = 0, Pin 
33 functions as a VFOE output. VFOE will go low during a read 
operation after the head has loaded and settled (HLT = 1) On 
the 1795/7, it will remain low until the last bit of the second 
CRC byte in the ID field VFOE will then go high until 8 bytes 
(MFM) or 4 bytes (FM) before the Address Mark It will then go 
active until the last bit of the second CRC byte of the Data 
Field On the 1791/3, VFOE will remain low until the end of the 
Data Field This pin has an internal 100K Ohm pull-up resistor 

This input informs the FD179X that the Read/Write head is 
positioned over Track 00 

3 



PIN NUMBER PIN NAME SYMBOL 

35 INDEX PULSE IP 

36 WAITE PROTECT WPRT 

37 DOUBLE DENSITY ODEN 

GENERAL DESCRIPTION 
The FD179X are N-Channel Silicon Gate MOS LSI 
devices which perform the functions of a Floppy Disk 
Formatter/Controller in a single chip implementation 
The FD179X, which can be considered the end result 
of both the FD1771 and FD1781 designs, is IBM 3740 
compatible in single density mode (FM) and System 34 
compatible in Double Density Mode (MFM). The 
rn ◄ "7f1V __ ..,._;..,,. --H •h,., ,,_ ..... ,, .. ,..,,.. ,..,f jl,- ;J ...... ~,.,,,,..,,.<',,.,,.. +hn 

FD1771, plus the added features necessary to 
read/write and format a double density diskette These 
include address mark detection, FM and MFM encode 
and decode logic, window extension, and write precom
pensation In order to maintain compatibility, the 
FD1771, FD1781, and FD179X designs were made as 
close as possible with the computer interface1 instruc
tion set, and 1/0 registers being identical Also, head 
load control is identicaL In each case, the actual pin 
assignments vary by only a few pins from any one to 
another 
The processor interface consists of an 8-bit bi-direc
tional bus for data, status, and control word transfers 
The FD179X is set up to operate on a multiplexed bus 
with other bus-oriented devices 
The FD179X is TTL compatible on all inputs and 
outputs The outputs will drive ONE TTL load or three 
LS loads The 1793 is identical to the 1791 except the 
DAL lines are TRUE for systems that utilize true data 
busses 
The 1795/7 has a side select output for controlling 
double sided drives, and the 1792 and 1794 are "Single 
Density Only" versions ol the 1791 and 1793 respec
tively On these devices, ODEN must be left open 

ORGANIZATION 

The Floppy Disk Formatter block diagram is illustrated 
on page 5. The primary sections include the parallel 
processor interface and the Floppy Disk interface 

Data Shift Register - This 8-bit register assembles 
serial data from the Read Data input (RAW READ) 
,luring Read operations and transfers serial data to the 
Write Data output during Write operations. 

Data Register This 8-bit register is used as a 
holding register during Disk Read and Write operations 
In Disk Read operations the assembled data byte is 
transferred in parallel to the Data Register from the 
Data Shift Register In Disk Write operations in
formation is transferred in parallel from the Data 
Register to the Data Shift Register 

FUNCTION 

This input informs the FD179X when the index hole is en-
countered on the diskette 

This input is sampled whenever a Write Command is received 
A logic low terminates the command and sets the Write 
Protect Status bit 

This input pin selects either single or double density 
operation. When ODEN = 0, double density is selected. When 
ODEN = 1, single density is selected. This line must be left 
open on the 1792/4 

4 

When executing the Seek command the Data Register 
holds the address of the desired Track position. This 
register is loaded from the DAL and gated onto the 
DAL under processor control. 
Track Register - This 8-bit register holds the track 
number of the current Read/Write head position. It is 
incremented by one every time the head is stepped in 
(towards track 76) and decremented by one when the 
h.-..,.,rl i<" ,-+,...,..,nnM ,..,, ,t (tn,.,.,rrle< tr'.'lrlr ()I" Tho rnnfQnf~ nf 

th;- r~-gi;t;;,.;;e -~~~-P·~;~d- ~Ith .. th~ ·;e~o~d~d- t;a~k 
number in the ID field during disk Read, Write, and 
Verify operations. The Track Register can be loaded 
from or transferred to the DAL This Register should 
not be loaded when the device is busy 
Sector Register (SR) - This 8-bit register holds the address 
of the desired sector position. The contents of the register 
are compared with the recorded sector number in the ID 
field during disk Read or Write operations. The Sector 
Register contents can be loaded from or transferred to the 
DAL This register should not be loaded when the device is 
busy 
Command Register (CR) This 8-bit register holds the 
command presently being executed. This register should 
not be loaded when the device is busy unless the new 
command is a force interrupt The command register can 
be loaded from the DAL, but not read onto the DAL 
Status Register (STR) - This 8-bit register holds device 
Status information. The meaning of the Status bits is a 
function of the type of command previously executed. This 
register can be read onto the DAL, but not loaded from the 
DAL 
CRC Logic - Tt1is logic is used to check or to generate the 
16-bit Cyclic Redundancy Check (CAC) The polynomial is: 
G(x) x10 + x12 + x~ + 1 

The CAC includes all information starting with the address 
mark and up to the CRC characters. The CAC register is 
preset to ones prior to data being shifted through the 
circuit 
Arithmetic/Logic Unit (ALU) - The ALU is a serial com
parator, incrementer, and decrementer and Is used for 
register modification and comparisons with the disk 
recorded ID field. 
Timing and Control All computer and Floppy Disk In
terface controls are generated through this logic The in
ternal device timing is generated from an external crystal 
clock. 
The FD179X has two different modes of operation ac
cording to the state of ODEN When ODEN = O double 
density (MFM) is assumed When ODEN = 1, single 



C□MruTtA 
,,ir£Af,.C( 
co•HRO, 

"' coinno, 
!230 ~ 1~) 

0151\ 
INTHIF,\CE 
cmonoL 

moo 

FD179X BLOCK DIAGRAM 

density (FM) is assumed 1792 & 1794 are single density 
only, 

AM Detector - The address marl< detector detects ID, data 
and index address marl<s during read and write operations 

PROCESSOR INTERFACE 

The Interlace to the processor Is accomplished through the 
eight Data Access Lines (DAL) and associated control 
signals The DAL are used to transfer Data, Status, and 
Control words out of, or Into the FD179X- The DAL are three 
state buffers that are enabled as output drivers when Chip 
Select (CS) and Read Enable (RE) are active (low logic state) 
or act as Input receivers when CS and Write Enable (WE) 
are active, 

When transfer of data with the Floppy Disk Controller is 
required by the host processor, the device address is 
decoded and CS is made low. The address bits A 1 and AO, 
combined with the signals RE during a Read operation or 
WE during a Write operation are interpreted as selecting 
the following registers: 

5 

A1 - AO READ(RE) WRITE(WE) 

0 0 Status Register Command Register 
0 1 Track Register Track Register 
1 0 Sector Register Sector Register 
1 1 Data Register Data Register 

During Direct Memory Access (OMA) types of data 
transfers between the Data Register of the FD179X and the 
processor, the Data Request (DRQ) output is used in Data 
Transfer control. This signal also appears as status bit 1 
during Read and Write operations 

On Disk Read operations the Data Request is activated (set 
high) when an assembled serial input byte is transferred in 
parallel to the Data Register This bit is cleared when the 
Data Register is read by the processor., If the Data Register 
is read after one or more characters are lost, by having new 
data transferred into the register prior to processor readout, 
the Lost Data bit is set in the Status Register, The Read 
operation continues until the end of sector is reached 

On Disk Write operations the data Request is activated 
when the Data Register transfers its contents to the Data 



Shift Register, and requires a new data byte It is reset 
when the Data Register is loaded with new data by the 
processoc If new data is not loaded at the time the next 
serial byte Is required by the Floppy Disk, a byte of zeroes 
is written on the diskette and the Lost Data bit is set In the 
Status Register 
At the completion of every command an INTRO is 
generated INTRO is reset by either reading the status 
register or by loading the command register with a new 
command In addition, INTRO is generated if a Force 
Interrupt command condition is met 
The 179X has two modes of operation according to the 
state of ODEN (Pin 37) When ODEN = 1, single density is 
selected In either case, the CLK input (Pin 24) is at 2 MHz 
However, when interfacing with the mini-floppy, the CLK 
input is set at 1 MHz for both single density and double 
density 
GENERAL DISK READ OPERATIONS 
Sector lengths of 128, 256, 512 or 1024 are obtainable in 
either FM or MFM formats. For FM, ODEN should be 
placed to logical "1 " For MFM formats, ODEN should be 
placed to a logical "O." Sector lengths are determined at 
format time by the fourth byte in the "ID" field. 

Sector Length Table· 

Sector Length Number of Bytes 
Field (hex\ in Sector (decimal\ 

00 128 
01 256 
02 512 
03 1024 

•1795197 may vary - see command summary 
The number of sectors per track as far as the FD179X is 
concerned can be from 1 to 255 sectors. The number of 
tracks as far as the FD179X is concerned Is from Oto 255 
tracks For IBM 3740 compatibility, sector lengths are 128 
bytes with 26 sectors per track. For System 34 com
patibility (MFM), sector lengths are 256 bytes/sector with 26 
sectors/track; or lengths of 1024 bytes/sector with 8 
sectors/track. (See Sector Length Table) 
For read operations in 8" double density the FD179X 
requires RAW READ Data (Pin 27) signal which is a 200 ns 
pulse per flux transition and a Read clock (RCLK) signal to 
Indicate flux transition spacings The RCLK (Pin 26) signal 
is provided by some drives but if not it may be derived 
externally by Phase lock loops, one st1ots, or counter 
techniques. In addition, a Read Gate Signal is provided as 
an output (Pin 25) on 1791/92/93/94 which can be used to 
inform phase lock loops when to acquire synchronization 
When reading from the media in FM. AG Is made true when 
2 bytes of zeroes are detected The FD179X must find an 
address mark within the next 10 bytes; otherwise AG is 
reset and the search for 2 bytes of zeroes begins all over 
again If an address mark is found within 10 bytes, AG 
remains true as long as the FD179X is deriving any useful 
information from the data stream. Similarly for MFM, RG is 
made active when 4 bytes of "00" or "FF" are detected. The 
FD179X must find an address mark within the next 16 
bytes, otherwise AG is reset and search resumes 
During read operations 0JVG = 0), the VFOE (Pin 33) is 
provided for phase lock loop synchronization VFOE will go 
active low when: 

6 

a) Bo1hHLTandHLDareTrue 
b) Settling Time, If programmed, has expired 
c) The 179X is inspecting data off the disk 

If WF/VFOE is not used, leave open or lie to a 10K resistor 
to +5 

GENERAL DISK WRITE OPERATION 
When writing is lo lake place on the diskette the Write Gate 
01'/G) output is activated, allowing current to flow into the 
Read/Write head As a precaution to erroneous writing the 
first data byte must be loaded into the Data Register in 
response to a Data Request from the FD179X before the 
Write Gate signal can be activated 
Writing is inhibited when the ~w~ri~te~P~r~ot~ec~t input is a !ogle 
low, in which case any Write command is immediately 
terminated, an interrupt is generated and the Write Protect 
status bit is set The Write Faull input, when activated, 
signifies a writing fault condition detected in disk drive 
electronics such as failure to detect write current flow 
when the Write Gate is activated On detection of this fault 
the F0179X termin;:i.tP.s the current command., and sets the 
Write Fault bit (bit 5) in the Status Word The Write Fault 
input should be made inactive when the Write Gate output 
becomes inactive 
For write operations, tt,e FD179X provides Write Gate (Pin 
30) and Write Data (Pin 31) outputs. Write data consists of a 
series of 500 ns pulses in FM (ODEN 1) and 200 ns 
pulses in MFM (ODEN 0) Write Data provides the unique 
address marks in both formats 
Also during write, two additional signals are provided for 
write precompensation These are EARLY (Pin 17) and 
LATE (Pin 18) EARLY is active true when the WO pulse 
appearing on (Pin 30) is to be written EARLY LATE Is active 
true when the WO pulse is to be written LATE If both 
EARLY and LATE are low when the WO pulse is present, 
the WO pulse is to be written at nominal. Since write 
precompensation values vary from disk manufacturer to 
disk manufacturer, the actual value is determined by 
several one shots or delay lines which are located external 
to the FD179X The write precompensation signals EARLY 
and LATE are valid for the duration of WO in both FM and 
MFM formats 

READY 
Whenever a Read or Write command (Type II or Ill) is 
received the FD179X samples the Ready input If this input 
is logic low the command is not executed and an Interrupt 
is generated All Type I commands are performed re
gardless of the state of the Ready input Also, whenever a 
Type II or Ill command is received, the TG43 signal output 
is updated 

COMMAND DESCRIPTION 
The FD179X will accept eleven commands Command 
words should only be loaded in the Command Register 
when the Busy status bit is off (Status bit 0). The one 
exception is the Force Interrupt command Whenever a 
command is being executed, the Busy status bit is set 
When a command is completed, an interrupt is generated 
and the Busy status bit is reset The Status Register 
indicates whether the completed command encountered 
an error or was fault free For ease of discussion, 
commands are divided into four types Commands and 
types are summarized in Table 1 



TABLE 1. COMMAND SUMMARY 
A. Commands for Models: 1791, 1792, 1793, 1794 B. Commands for Models: 1795, 1797 

Bits Bits 
Type Command 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

I Restore 0 0 0 0 h V r1 ro 0 0 0 0 h V r1 ro 
I Seek 0 0 0 1 h V r1 ro 0 0 0 1 h V r1 ro 
I Step 0 0 1 T h V r1 ro 0 0 1 T h V r1 ro 
I Step-in 0 1 0 T h V r1 ro 0 1 0 T h V r1 ro 
I Step-out 0 1 1 T h V r1 ro 0 1 1 T h V r1 ro 
II Read Sector 1 0 0 m s E C 0 1 0 0 m L E u 0 
II Write Sector 1 0 1 m s E C ao 1 0 1 m L E u ao 
Ill Read Address 1 1 0 0 0 E 0 0 1 1 0 0 0 E u 0 
Ill Read Track 1 1 1 0 0 E 0 0 1 1 1 0 0 E u 0 
Ill Write Track 1 1 1 1 0 E 0 0 1 1 1 1 0 E u 0 
IV Force Interrupt 1 1 0 1 13 12 11 IQ 1 1 0 1 13 12 11 lo 

FLAG SUMMARY 
TABLE 2. FLAG SUMMARY 

Command Bit 
Type No(s) Description 

I 0, 1 r1 ro = Stepping Motor Rate 
See Table 3 for Rate Summary 

I 2 V = Track Number Verify Flag V = o, No verify 
V = 1, Verify on destination track 

I 3 h = Head Load Flag h 1, Load head at beginning 
h 0, Unload head at beginning 

I 4 T = Track Update Flag T = o, No update 
T 1, Update track register 

II 0 ao Data Address Mark ao = 0, FB (DAM) 
ao= 1, F8(deleted DAM) 

II 1 C = Side Compare Flag C = 0, Disable side compare 
C = 1, Enable side compare 

11&111 1 U = Update SSO u = 0, Update SSO to 0 
u = 1, Update SSO to 1 

11&111 2 E 15 MS Delay E = 0, No 15 MS delay 
E = 1, 15 MS delay 

II 3 s Side Compare Flag s = o, Compare for side o 
s = 1, Compare for side 1 

II 3 L Sector Length Flag LSB's Sector Length in ID Field 
00 01 10 11 

L = 0 256 512 1024 128 

L = 1 128 256 512 1024 

II 4 m = Multiple Record Flag m = 0, Single record 
m = 1, Multiple records 

IV 0-3 Ix Interrupt Condition Flags 
lo = 1 Not Ready To Ready Transition 
11 1 Ready To Not Ready Transition 
12 = 1 Index Pulse 
13 1 Immediate Interrupt, Requires A Reset 
I3-lo 0 Terminate With No Interrupt (INTRO) 

• NOTE: See Type IV Command Description for further information 

7 



TYPE I COMMANDS 

The Type I Commands Include the Restore, Seek, Step, 
Step-In, and Step-Out commands Each of the Type I 
Commands contains a rate field (ro r1), which determines 
the stepping motor rate as defined in Table 3 

A 2 ,,s (MFM) or 4 µs (FM) pulse is provided as an output to 
the drive. For every step pulse issued, the drive moves one 
track location in a direction determined by the direction 
output The chip will step the drive in the same direction it 
last stepped unless the command changes the direction 

The Direction signal is active high when stepping in and 
low when stepping out. The Direction signal is valid 12 ~s 
before the first stepping pulse is generated 

The rates (shown in Table 3) can be applied to a Step
Direction Motor through the device interface 

1ABLE 3. STEPPING RATES 

CLK 2 MHz 2MHz l MHz l MHz 2MHz 1 MHz 

ODEN 

Al AO TEST=l TEST"'1 TEST"l TEST=1 TEST ~o TEST=O 

0 0 3 ms 3 ms 6 ms 6 ms 18411S 36811s 

0 1 6ms 6 ms 12ms 12 ms 1901,s 38011s 

1 0 10 ms 10 ms 20 ms 20 ms 19811S 396115 

1 1 15 ms 15ms 30 ms 30 ms 208115 41611s 

After the last directional step an additional 15 milliseconds 
of head settling time takes place if the Verify flag is set in 
Type I commands Note that this time doubles to 30 ms for 
a 1 MHz clock If TEST 0, there is zero settling time 
There is also a 15 ms head settling time if the E flag is set in 
any Type II orlll command 

When a Seek, Step or Restore command is executed an 
optional verification of Read-Write head position can be 
performed by settling bit 2 (V 1) in the command word to 
a logic 1. The verification operation begins at the end of the 
15 millisecond Settling time after the head is loaded against 
the media The track number from the first encountered ID 
Field is compared against the contents of the Track 
Register_ If the track numbers compare and the ID Field 
Cyclic Redundancy Check (CRC) is correct, the verify 
operation is complete and an INTRO is generated with no 
errors If there is a match but not a valid CRC, the CRC error 
status bit is set (Status bit 3), and the next encountered ID 
field is read from the disk for the verification operation 

The FD179X must find an ID field with correct track number 
and correct CRC within 5 revolutions of the media; 
otherwise the seek error is set and an INTRO is generated 
If V = 0, no verification is performed 

The Head Load (HLD) output controls the movement of the 
read/write head against the media HLD is activated at the 
beginning of a Type I command if the h flag is set (h = 1), at 
the end of the Type I command if the verify flag (V = 1), or 
upon receipt of any Type II or Ill command Once HLD is 
active it remains active until either a Type I command is 
received with (h = 0 and V = 0); or if the FD179X is in an 
idle state (non-busy) and 15 index pulses have occurred 

8 

Head Load timing (Hll) is an input to the FD179X which is 
used for the head engage time .. When HLT = 1, the FD179X 
assumes the head is completely engaged The head 
engage time is typically 30 to 100 ms depending on drive 
The low to high transition on HLD is typically used to fire a 
one shot The output of the one shot is then used for HLT 
and supplied as an input to tt1e FD179X 

HlD 

l--so TO 1ooms---l ~---~ -------

HL T (FROM ONE SHOT) 

HEAD LOAD TIMING 

When both HLD and HLT are true, the FD179X will then 
1~au i1u1n u1 w1ilt.:: hJ H10 maJiu The·'.::;,;;,::!'·,:;! HLD ;::;;d !-!~T 
appears as status Bit 5 in Type I status 

In summary for tt,e Type I commands: if h = 0 and V = 0, 
HLD is reset If h 1 and V = 0, HLD is set at the 
beginning of the command and HLT is not sampled nor is 
there an internal 15 ms delay If h 0 and V = 1, HLD is 
set near the end of the command, an internal 15 ms occurs, 
and the FD179X waits for HLT to be true If h 1 and V = 
1, HLD is set at the beginning of the command. Near the 
end of the command, after all the steps have been issued, 
an internal 15 ms delay occurs and the FD179X then waits 
for HLT to occur 

For Type II and Ill commands with E flag off, HLD is made 
active and HLT is sampled until true With E flag on, HLD is 
made active, an internal 15 ms delay occurs and then HLT 
is sampled until true 

RESTORE (SEEK TRACK 0) 

Upon receipt of this command the Track 00 (TR00) input is 
sampled If TROO is active low indicating the Read-Write 
head is positioned over track 0, the Track Register is loaded 
with zeroes and an interrupt is generated If TROO is not 
active low, stepping pulses (pins 15 to 16) al a rate specified 
by the r1 ro field are issued until the TROO input is activated 
At this time the Track Register is loaded with zeroes and an 
interrupt is generated If the TROO input does not go active 
low after 255 stepping pulses, the FD179X terminates 
operation, interrupts, and sets the Seek error status bit, 
providing the V flag is set A verification operation also 
takes place if the V flag is set The h bit allows the head to 
be loaded at the start of command Note that the Restore 
command is executed when MR goes from an active to an 
inactive slate and that the DAO pin stays low 

SEEK 

This command assumes that the Track Register contains 
the track number of ttie current position of the Read-Write 
head and the Data Register contains the desired track 
number The FD179X will update the Track register and 
issue stepping pulses in the appropriate direction until the 
contents of the Track register are equal to the contents of 



TYPE I COMMAND FLOW 

the Data Register (the desired track location) A verification 
operation takes place if the V flag is on The h bit allows the 
head to be loaded at the start of the command. An interrupt 
is generated at the completion of the command Note: 
When using multiple drives, the track register must be 
updated for the drive selected before seeks are issued 

STEP 

Upon receipt of this command, the FD179X issues one 
stepping pulse to the disk drive The stepping motor 
direction is the same as in the previous step command 
After a delay determined by the r1 ro field, a verification 
takes place if the V flag is on If the U flag is on, the Track 
Register is updated The h bit allows the head to be loaded 
at the start of the command An interrupt is generated at 
the completion of the command 

STEP-IN 

Upon receipt of this command, the FD179X issues one 
stepping pulse in the direction towards track 76. If the U 

9 

TYPE I COMMAND FLOW 

flag is on, the Track Register is incremented by one After a 
delay determined by the r1 ro field, a verification takes place 
if the V flag is on The h bit allows the head to be loaded at 
the start of the command An interrupt is generated at the 
completion of the command 

STEP-OUT 

Upon receipt of this command, the FD179X issues one 
stepping pulse in the direction towards track o. If the U flag 
is on, the Track Register is decremented by one. After a 
delay determined by the r1 ro field, a verification takes place 
if the V flag is on The h bit allows the head to be loaded at 
the start of the command An interrupt is generated at the 
completion of the command 

EXCEPTIONS 

On the 179517 devices, the SSO output is not affected 
during Type 1 commands, and an internal side compare 
does not take place when the (V) Verify Flag is on 



VERIFY 
SEQUENCE 

NOTE 11 Tm~ 0, lHEnE 15 UO 11MS DEl,1,V 
if'fm" 1 AllOClK ~ ! I.O!t mrnE IS ,l,.')OM5DELAY 

TYPE I COMMAND FLOW 

TYPE II COMMANDS 

lNTnO AE5ETGUS~ 
SETSE(KEMOA 

fl£5EI 
.::AC 

The Type II Commands are the Read Sector and Write 
Sector commands Prior to loading the Type II Command 
into the Command Register, the computer must load the 
Sector Register with the desired sector number Upon 
receipt of the Type II command, the busy status Bit is set If 
the E flag = 1 (this is the normal case) HLD is made active 
and HLT is sampled after a 15 msec delay If the E flag is 0, 
the head is loaded and HLT sampled with no 15 msec 
delay The ID field and Data Field format are shown on page 
13. 
When an ID field is localed on the disk, the FD179X 
compares the Track Number on the ID field with the Track 
Register. If there is not a match, the next encountered ID 
field is read and a comparison is again made. If there was a 
match, the Sector Number of the ID field is compared with 
the Sector Register. If there is not a Sector match, the next 
encountered ID field is read off the disk and comparisons 
again made If the ID field CRC is correct, the data field is 

10 

then located and will be either written into, or read from 
depending upon the command. The FD179X must find an 
ID field with a Track number, Sector number, side number, 
and CRC within four revolutions of the disk; otherwise, the 
Record not found status bit is set (Status bit 3) and the 
command is terminated with an interrupt 

TYPE II COMMAND 
Each of the Type II Commands contains an (m) flag which 
determines if multiple records (sectors) are to be read or 
written, depending upon the command. If m 0, a single 
sector is read or written and an interrupt is generated at the 
completion of the command If m 1, multiple records are 
read or written with the sector register internally updated 
so that an address verification can occur on the next 



record The FD179X will continue to read or write multiple 
records and update the sector register in numerical 
ascending sequence until the sector register exceeds the 
number of sectors on the track or until the Force Interrupt 
command is loaded into the Command Register, which 
terminates the command and generates an interrupt 

For example: If the FD179X is instructed lo read sector 27 
and there are only 26 on the track, the sector register ex
ceeds the number available The FD179X will search for 5 
disk revolutions, interrupt out, reset busy, and set the 
record not found status bit 

The Type II commands for 1791-94 also contain side select 
compare flags. When C O (Bit 1) no side comparison is 
made When C = 1, the LSB of the side number is read off 
the ID Field of the disk and compared with the contents of 
the (S) flag (Bil 3) If the S flag compares with the side 
number recorded in the ID field, the FD179X continues with 
the ID search .. If a comparison is not made within 5 index 
pulses, the interrupt line is made active and the Record
Not-Found status bit is set 

sncnc 
51,.1usrnnon 

TYPE It COMMAND 

11 

The Type II and Ill commands for the 1795-97 contain a side 
select flag (Bil 1) When U = 0, SSO Is updated to 0. 
Similarly, U = 1 updates SSO to 1. The chip compares the 
SSO to the ID field If they do not compare within 5 
revolutions the interrupt line is made active and the RNF 
status bit is set 

The 1795/7 READ SECTOR and WRITE SECTOR com
mands include a 'L' flag. The 'L' flag, in conjunction with 
the sector length byte of the ID Field, allows different byte 
lengths to be implemented in each sector.· For IBM 
compatability, the 'L' flag should be set to a one. 

READ SECTOR 

Upon receipt of the Read Sector command, the head is 
loaded, the Busy status bit set, and when an ID field is 
encountered that has the correct track number, correct 
sector number, correct side number, and correct CRC, the 
data field is presented to the computer. The Data Address 

READ SECTOR 
SEQUENCE 

TYPE II COMMAND 



WRITE SECTOR 
SEQUENCE 

TYPE II COMMAND 

5ElCATA 

WAITEllYlE 
OFZtA05 

Mark of the data field must be found within 30 bytes in 
single density and 43 bytes in double density of the last ID 
field CRC byte; if not, the ID field is searched for and 
verified again followed by the Data Address Mark search. If 
after 5 revolutions the DAM cannot be found, the Record 
Not Found status bit is set and the operation is terminated 
When the first character or byte of the data field has been 
shifted through the DSR, it is transferred to the DR, and 
DRQ is generated When the next byte is accumulated in 
the DSR, it is transferred to the DR and another DAO is 
generated If the Computer has not read the previous 
contents of the OR before a new character is transferred 
that character is lost and the Lost Data Status bit is set 
This sequence continues until the complete dala field has 
been inputted to the computer If there is a CRC error at the 
end of the data field, the CRC error slatus bit is set, and the 
command is terminated (even if It is a multiple record 
command) 
At the end of the Read operation, the type of Data Address 
Mark encountered in the data field is recorded in the Status 
Register (Bit 5) as shown: 

12 

STATUS 
BIT5 

1 Deleted Data Mark 
0 Data Mark 

WRITE SECTOR 

Upon receipt of the Write Sector command, the head is 
loaded (HLD active) and the Busy status bit is set When an 
ID field is encountered that has the correct track number, 
correct sector number, correct side number, and correct 
CRC, a DRQ is generated. The FD179X counts off 11 bytes 
in single density and 22 bytes in double density from the 
CRC field and the Write Gate 0JVG) output is made active if 
the DRQ is serviced (Le., the DR has been loaded by the 
computer). If DRQ has not been serviced, the command is 
terminated and the Lost Data status bit is set If the DRQ 
has been serviced, the WG is made active and six bytes of 
zeroes in single density and 12 bytes in double density are 
then written on the disk. Al this time the Data Address 
Mark is then written on the disk as determined by the ao 
field of the command as shown below: 

ao 

1 
0 

Data Address Mark (Bit O) 

Deleted Data Mark 
Data Mark 

The FD179X then writes the data field and generates DRQ's 
to the computer If the DRQ is not serviced in time for 
continuous writing the Lost Data Status Bit is set and a 
byte of zeroes is written on the disk The command is not 
terminated After the last data byte has been written on the 
disk, the twc,.byte CRC is computed internally and written 
on the disk followed by one byte of logic ones in FM or in 
MFM The WG output is then deactivated For a 2 MHz 
clock the INTRO will set 8 to 12µsec after the last CRC byte 
is written. For partial sector writing, the proper method is to 
write the data and fill the balance with zeroes. By letting the 
chip fill the zeroes, errors may be masked by the lost data 
status and improper CRC Bytes. 

TYPE Ill COMMANDS 

READ ADDRESS 

Upon receipt of the Read Address command, the head 
is loaded and the Busy Status Bit is set The next 
encountered ID field is then read in from the disk, and 
the six data bytes of the ID field are assembled and 
transferred to the DR, and a DRQ is generated for each 
byte. The six bytes of the ID field are shown below: 

TRACK 
ADDA 

SIDE SECTOR 
NUMBER ADDRESS 

2 3 

SECTOR 
LENGTH 

CRC CRC 
2 

Although the CRC characters are transferred to the 
computer, the FD179X checks for validity and the CRC 
error status bit is set if there is a CRC error The Track 
Address of the ID field is written into the sector 
register so that a comparison can be made by the 
user. At the end of the operation an interrupt is 
generated and the Busy Status is reset 



READ TRACK 

Upon receipt of the READ track command, the head is 
loaded, and the Busy Status bit is set Reading starts with 
the leading edge of the first encountered index pulse and 
continues until the next index pulse All Gap, Header, and 
data bytes are assembled and transferred to the data 
register and DRO's are generated for each byte The ac
cumulation of bytes is synchronized to each address mark 
encountered An interrupt is generated at the completion of 
the command 

This command has several characteristics which make it 
suitable for diagnostic purposes They are: the Read Gate 

TYPE Ill COMMAND WRITE TRACK 

13 

is not activated during the command; no CRC checking is 
performed; gap information is included in the data stream; 
the internal side compare is not performed; and the ad
dress mark detector is on for the duration of the command 
Because the AM. detector is always on, write splices or 
noise may cause the chip to look for an A M If an address 
mark does not appear on schedule the Lost Data status flag 
is set 

The ID AM, ID field, ID CRC bytes, DAM, Data, and Data 
CRC Bytes for each sector will be correct The Gap Bytes 
may be read incorrectly during write-splice time because of 
synchronization 

wnntrc 
CtK,01 

wn,nro rron 
FeFOClK•Cl 

WfUlE2CflC 
o,..,ns 

TYPE Ill COMMAND WRITE TRACK 



CONTROL BYTES FOR INITIALIZATION 

DATA PATTERN FD179X INTERPRETATION FD1791/3 INTERPRETATION 
IN DR (HEX) IN FM (ODEN = 1) INMFM(~=O) 

00 thru F4 Write 00 thru F4 with CLK = FF Write 00 ttiru F4, in MFM 
F5 Not Allowed Write A1 • in MFM, Preset CRC 
F6 Nol Allowed Write C2 .. in MFM 
F7 Generate 2 CRC bytes Generate 2 CRC bytes 
FB thru FB Write FB thru FB, Clk = C7, Preset CRC Write FB thru FB, in MFM 
FC Write FC with Clk = D7 Write FC in MFM 
FD Write FD with Clk = FF Write FD in MFM 
FE Write FE, Clk = C7, Preset CRC Write FE in MFM 
FF Write FF with Clk = FF 

• Missing clock transition between bits 4 and 5 

WRITE TRACK FORMATTING THE DISK 

(Refer to section on Type Ill commands for flow diagrams.) 

Formattino the disk is a relatively simple task when 
operating programmed 1/0 or when operating under OMA 
with a large amount of memory Data and gap information 
must be provided at the computer interface Formatting the 
disk Is accomplished by positioning the R/W head over the 
desired track number and issuing the Write Track com
mand 

Upon receipt of the Write Track command, the head Is 
loaded and the Busy Status bit is set Writing starts with 
the leading edge of the first encountered index pulse and 
continues until the next index pulse, at which time the 
interrupt Is activated The Data Request is activated im
mediately upon receiving the command, but writing will not 
start until after the first byte has been loaded into the Data 
Register If the DR has not been loaded by the time the 
index pulse Is encountered the operation is terminated 
making the device Not Busy, the Lost Data Status Bit is set, 
and the Interrupt is activated If a byte is not present in the 
DR when needed, a byte of zeroes is substituted 

This sequence continues from one index mark to the next 
index mark. Normally, whatever data pattern appears in the 
data register is written on the disk with a normal clock 
pattern. However, if the FD179X detects a data pattern of 
F5 ihru FE in the data register, this is interpreted as data 
address marks with missing clocks or CRC generation 

The CRC generator is initialized when any data byte from 
FB to FE Is about to be transferred from the DR to the DSR 
in FM or by receipt of F5 in MFM. An F7 pattern will 
generate two CRC characters in FM or MFM. As a con
sequence, the patterns F5 thru FE must not appear In the 
gaps, data fields, or ID fields Also, CRC's must be 
generated by an F7 pattern 

Disks may be formatted in IBM 3740 or System 34 formats 
with sector lengths of 128,256,512, or 1024 bytes 

TYPE IV COMMANDS 

The Forced Interrupt command is generally used to ter
minate a multiple sector read or write command or to in-

14 

Write FF in MFM 

"Missing clock transition betw1;en bits 3 & 4 

sure Type I status in the status register. This command can 
be loaded into the command register at any time If there is 
a current command under execution (busy status bit set) 
the command will be terminated and the busy status bit 
reset 

The lower four bits of tt1e command determine the con
ditional interrupt as follows: 

lo = Not-Ready to Ready Transition 
11 = Ready to Not-Ready Transition 
12 = Every Index Pulse 
13 = Immediate Interrupt 

The conditional interrupt is enabled when the cor
responding bit positions of tt,e command (13 - IQ) are set to 
a 1. Then, when the condition for interrupt is met, lhe IN
TRO line will go high signifying that the condition specified 
has occurred If 13 - lo are all set to zero (HEX DO), no in
terrupt will occur but any command presently under 
execution will be immediately terminated When using the 
immediate interrupt condition (13 = 1) an interrupt will be 
immediately generated and the current command ter
minated Reading the status or writing to the command 
register will not automatically clear the interrupt. The HEX 
DO is the only command that will enable the immediate 
interrupt (HEX DB) to clear on a subsequent load command 
register or read status register operation Follow a HEX DB 
with DO command 

Wait 8 micro sec (double density) or 16 micro sec (single 
density before issuing a new command after issuing a 
forced interrupt (times double when clock = 1 MHz) 
Loading a new command sooner tt1an this will nullify the 
forced interrupt 

Forced interrupt stops any command at the end of an in
ternal micro-instruction and generates INTRO when the 
specified condition is met. Forced interrupt will wait until 
ALU operations in progress are complete (CRC 
calculations, compares, etc) 

More than one condition may be set at a time If for 
example, the READY TO NOT-READY condition (11 1) 
and the Every Index Pulse (12 = 1) are both set, tt1e 
resultant command would be HEX "DA" The "OR" func
tion is performed so that either a READY TO NOT- READY 
or the next Index Pulse will cause an interrupt condition 



ENTER 

U TEST"" f NO DELAY 
II TESTo-1 and CLK"' 1 MHZ 30 MS DELAY 

INTRO 
RESET BUSY 

READ 
ADDRESS 

TYPE Ill COMMAND 
Read Track/Address 

15 

SET 
DAO 

READ TRACK 
SEQUENCE 

SET tNTRQ 
RESET BUSY 

SET LOST 
DATA BIT 



SET INTRO 
RESET BUSY 

READ ADDRESS 
SEQUENCE 

RESET BUSY 
SET INTRO 
SETRNF 

SET CRC 
ERROR BJT 

TYPE Ill COMMAND 
Read Track/Address 

16 

STATUS REGISTER 

Upon receipt al any command, except the Force Interrupt 
command, the Busy Status bit is set and the rest of the 
status bits are updated or cleared for the new command If 
the Force Interrupt Command is received when there is a 
current command under execution, the Busy status bit is 
reset, and the rest of the status bits are unchanged .. If the 
Force Interrupt command is received when there is not a 
current command under execution, the Busy Status bit is 
reset and the rest of the status bits are updated or cleared 
In this case, Status reflects the Type I commands 

The user has the option of reading the status register 
through program control or using the ORO line with OMA or 
interrupt methods. When the Data register is read the ORO 
bit in the status register and the ORO line are automatically 
reset A write to the Data register also causes both DRO's 
to reset 

The busy bit in the status may be monitored with a user 
program to determine when a command is complete, in 
iit::u u[ m,iuy U u.:: il,.ririQ lim~. 'v'v'heil u;:iii,!::J :.:it.: if~TflQ, a t.u:..y 
status check is not recommended because a read of the 
status register to determine the condition of busy will reset 
the INTRO line 

The format of the Status Register is shown below: 

BITS 

S7 S6 S5 S4 S3 S2 S1 so 

Status varies according to the type of command executed 
as shown in Table 4 

Because of internal sync cycles, certain time delays must 
be observed when operating under programmed 1/0. They 
are: (times double when clock = 1 MHz) 

Delay Req'd 
Operation Next Operation FM I MFM 

Write to Read Busy Bit 12µs 6µs 
Command Reg. (Status Bit 0) I 

Write to Read Status 28µs I 14µs 
Command Reg. Bits1-7 I 

Write Any Read From Diff 0 I 0 
Register Register I 

IBM 3740 FORMAT - 128 BYTES/SECTOR 

Shown below is the IBM single-density format with 128 
bytes/sector In order to format a diskette, the user must 
issue the Write Track command, and load the data register 
with the following values For every byte to be written, there 
Is one Data Request 



IBM 3740 FORMAT - 128 BYTES/SECTOR 

Shown below is the IBM single-density format with 128 
bytes/sector In order to format a diskette, the user must 
issue the Write Track command, and load the data register 
with the following values. For every byte to be written, there 
is one Data Request 

NUMBER HEX VALUE OF 
OF BYTES BYTE WRITTEN 

40 FF (orOO)' 
6 00 
1 FC (Index Mark) 
~ FF(orOO)' 

6 00 
FE (ID Address Mark) 
Track Number 
Side Number(OOor01) 
Sector Number(1 thru 1A) 
00 (Sector Length) 
F7 (2 CRC's written) 

11 FF(orOO)' 
6 00 
1 FB (Data Address Mark) 

128 Data(IBM uses E5) 
1 F7 (2 CRC's written) 

.___gz_ FF (orOO)' 
247' • FF (orOO)' 

•write bracketed field 26 times 
.. Continue writing until FD179X interrupts out 

Approx 247 bytes 
1-0ptional '00' on 179517 only 

IBM SYSTEM 34 FORMAT- 256 BYTES/SECTOR 

Shown below is the IBM dual-density format with 256 
bytes/sector. In order to format a diskette the user must 
issue the Write Track command and load the data register 
with the following values For every byte to be written, there 
is one data request 

NUMBER 
OF BYTES 

80 
12 
3 

1 
1 

22 
12 
3 
1 

256 
1 
~ 

598 .. 

4E 
00 

HEX VALUE OF 
BYTE WRITTEN 

F6 (Writes C2) 
FC (Index Mark) 
4E 
00 
F5 (Writes A 1) 
FE (ID Address Mark) 
Track Number(O thru 4C) 
Side Number (0 or 1) 
Sector Number (1 thru 1 A) 
01 (Sector Length) 
F7 (2 CRCs written) 
4E 
00 
F5 (Writes A 1) 
FB (Data Address Mark) 
DATA 
F7 (2 CRCs written) 
4E 
4E 

·write bracketed field 26 times 
• ·continue writing until FD179X interrupts out 

Approx 598 bytes 

17 



1. NON-IBM FORMATS 

Variations in the IBM formats are possible to a limited 
extent if the following requirements are met: 

1) Sector size must be 128,256,512 or 1024 bytes 

2) Gap 2 cannot be varied from the IBM fom,at 

3) 3 bytes of A 1 must be used in MFM 

In addition, the Index Address Mark is not required for 
operation by the FD179X Gap 1, 3, and 4 lengths can be as 
short as 2 bytes for FD179X operation, however PLL lock up 
time, motor speed variation, write-splice area, etc. will add 
more bytes to each gap to achieve proper operation It is 
recommended that the IBM format be used for highest 
system reliability 

FM MFM 

Gap I 16bytes FF 32 bytes4E 

Gap II 11 bytes FF 22 bytes4E 

6bytes00 12 bytesOO 
3 bytesA1 

Gap Ill"' 10 bytes FF 24 bytes4E 
4 bytesOO 8 bytesOO 

3bytesA1 

Gap IV 16 bytes FF 16 bytes4E 

• Byte counts must be exact 
.. Byte counts are minimum, except exactly 3 bytes of A 1 

must be written 

TIMING CHARACTERISTICS 

<,aa---j 

r,.,o 

1--
"" ,,0 

" J_:pm' '"•~, 
'"" f--

ITi< -----+----l 

•oo,.I--
><OIE ' B uu II{ ru, ...... N[IHlY to[OlOW or OES•fl[O 

llu(OOUOHSWHENClOCK IU•tt 

IS[flV•C[(V/OnSTCASE> 
fM H~ .,5 
Mf~! I)~,,; 

0110 Hu,.,G EOG£ "<DIC.ATES TUAI 11<£ 0"1A ll!Gl!\TEll WAS llf,'10 
u1ina11,s,.,GEOGE OCCUflSU[!aOOFCOl,O,U!<O 
uono H<.l!NG !OGE ,,,o,curn THAT Tit( SIAIUS flHllS!Ul WAS READ 

READ ENABLE TIMING 

TA= o0c to 70°C, Voo = + 12V e: 6V, Vss = 0V, Vee =+5V ± 25V 

READ ENABLE TIMING (See Note 6, Page 21) 

SYMBOL CHARACTERISTIC MIN. TYP. MAX. UNITS CONDITIONS 

TSET Setup ADDA & CS to R~ 50 nsec 
THLD Hold ADDA & CS from RE 10 nsec 
TRE RE Pulse Width 400 nsec C,=50pf 
TDRR DAO Reset from RE 400 500 nsec 
TIRA INTRO Reset from RE 500 3000 nsec See Note 5 
TDACC Data Access from RE 350 nsec C,=50pf 
TDOH Data Hold From RE 50 150 nsec C,=50pf 

WRITE ENABLE TIMING (See Note 6, Page 21) 

SYMBOL CHARACTERISTIC MIN. TYP. MAX. UNITS CONDITIONS 

TSET Setup ADDA & CS to WE 50 nsec 
THLD Hold ADDA & CS from WE 10 nsec 
TWE WE Pulse Width 350 nsec 
TDRR DAO Reset from WE 400 500 nsec 
TIRA INTRO Reset from WE 500 3000 nsec See Note 5 
TDS Data Setup to WE 250 nsec 
TDH Data Hold from WE 70 nsec 

18 



I-• 'mw 

-•me ~ -------+----! O.\TAl.tt/r,Tf-------

1 

0£VHIO 

--1 '•·· I 
-- 'o .. r-

O!l01"5cr,G[OG[ l!<O,CAJESl"Allh[0,.1"Jl(GISHJ115{MPTY 
ona fMll"G [OGE ,.,o,cATts THAI h<t DATA Jl(Gl5Hn ,s LOADED 
11411\0R•Sll<G[OG[ .. w,c.o.t(l"((!<OOf ACOMla"-1◄ 0 

;~t-~~IT~~;,"::~ [00( ,r,o,cAHS lt<AI TH£ COMl.<Al!O ll(GtSl[Jl 

WRITE ENABLE TIMING 

INPUT DATA TIMING· 

SYMBOL CHARACTERISTIC MIN. 

Tpw Raw Read Pulse Width 100 

tbc Fiawl'ieaa Cycle Time 1500 

Tc RCLK Cycle Time 1500 

Tx, RCLK hold to Raw Read 40 

Tx, Raw Read hold to RCLK 40 

Mwnr"o 

net~ 

DISKETTE 
8" 
8 
S" 

5" 

TYP. 

200 

2000 

2000 

I ,,, -7 
,, .. ~-j I-

LJ LI 
-j ,., l==•,,-1 

I 
1--" --+-··" ·--! 
I " . ---·1 

NOMINAL 

MODE DDEN CLK T, T, T, 
MFM 0 2 MHz 1 µS 1 µS 2 µS 

FM 1 2 MHz 2 µS 2µs 4 µS 

MFM 0 1 MHz 2µS 2µs 4 µS 

FM 1 1 MHz 4 µS 4 µS 8 µS 

INPUT DATA TIMING 

MAX. UNITS CONDITIONS 

nsec See Note 1 

nsec 1800 ns@ 70°C 

nsec 1800 ns@ 70'C 

nsec See Note 1 

nsec See Note 1 

WRITE DATA TIMING: (All TIMES DOUBLE WHEN CLK = 1 MHz) (See Note 6, Page21) 

SYMBOL CHARACTERISTICS MIN. TYP. MAX. UNITS CONDITIONS 

Twp Write Data Pulse Width 500 650 nsec FM 
200 350 nsec MFM 

Twg Write Gate to Write Data 2 µsec FM 
1 µsec MFM 

Tbc Write data cycle Time 2,3, or4 µsec ±CLK Error 
Ts Early (Late) to Write Data 125 nsec MFM 
Th Early (Late) From 125 nsec MFM 

Write Data 
Twf Write Gate off from WD 2 µsec FM 

1 µ.sec MFM 

Twdl WD Valid to Clk 100 nsec CLK=1 MHZ 
50 nsec CLK=2 MHZ 

Twd2 WD Valid after CLK 100 nsec CLK=1 MHZ 
30 nsec CLK=2 MHZ 

19 



CLK r--250NS~ 

~~::= 17,. ________ -!I L 

W~ i fw'/4:a 
Twdl->J l f-rwo2 

"~~~ , i"'=T="'l 
{001::N::U) L.....--------' I '--

-------'-"--~~/1/1.<...LJ i W7 /4a 
Twdl--..j 

WO MUST HAVE RISING EDGE IN FIRST SHADED AREA AND TRAILING 
EDGE IN SECOND SHADED AREA 

WAITE DATNCLOCK AELAT!ONSH1P 

WRITE DATA TIMING 

i 

MISCELLANEOUS TIMING: (T'imes Double When Clock = 1 MHz) (See Note 6, Page 21) 

SYMBOL CHARACTERISTIC MIN. TYP. MAX. UNITS 

TCD, Clock Duty (low) 230 250 20000 nsec 
TCD, Clock Duty (high) 200 250 20000 nsec 
TSTP Step Pulse Output 2or4 µsec 
TDIR Dir Setup to Step 12 µsec 
TMR Master Reset Pulse Width 50 µsec 
TIP Index Pulse Width 10 µsec 
TWF Write Fault Pulse Width 10 µsec 

20 

CONDITIONS 

See Notes 
±CLKERROR 

See Notes 



;;; ,_ __ _ NOTES: 
1 Pulse width on RAW READ (Pin 27) is normally 

100-300 ns However, pulse may be any width if 
pulse is entirely within window If pulse occurs in both 
windows, then pulse width must be less than 300 ns 
for MFM at CLK = 2 MHz and 600 ns for FM at 2 
MHz .. Times double for 1 MHz 

2 A PPL Data Separator is recommended for8" MFM. 

1- '"" ---1 
3 tbc should be 2 µs, nominal in MFM and 4 µs nominal 

in FM Times double when CLK = 1 MHz. 
4 RCLK may be high or low during RAW READ (Polarity 

is unimportant) 
5 Times double when clock 1 MHz 

6. Output timing readings are at VoL = 0.Bv and Vo" = 
2.0v 

MISCELLANEOUS TIMING 
'FROM STEP RATE TABLE 

Table 4. STATUS REGISTER SUMMARY 

ALL TYPE I READ READ READ WRITE WRITE 
BIT COMMANDS ADDRESS SECTOR TRACK SECTOR TRACK 

S? NOT READY NOT READY NOT READY NOT READY NOT READY NOT READY 

S6 WRITE 0 0 0 WRITE WRITE 
PROTECT PROTECT PROTECT 

S5 HEAD LOADED 0 RECORD TYPE 0 WRITE FAULT WRITE FAULT 

S4 SEl':K ERROR RNF RNF 0 RNF 0 

S3 CRC ERROR CRC ERROR CRC ERROR 0 CRC ERROR 0 

S2 TRACK 0 LOST DATA LOST DATA LOST DATA LOST DATA LOST DATA 

S1 INDEX PULSE DRQ DRQ DRQ DRQ DRQ 

so BUSY BUSY BUSY BUSY BUSY BUSY 

STATUS FOR TYPE I COMMANDS 

BIT NAME MEANING 

S7 NOT READY This bit when set indicates the drive is not ready When reset it indicates that the drive 
is ready This bit is an inverted copy of the Ready input and logically 'ored' with MR 

S6 PROTECTED When set, indicates Write Protect is activated This bit is an inverted copy of WRPT 
input 

S5 HEAD LOADED When set, it indicates the head is loaded and engaged This bit is a logical "and" of 
HLD and HLT signals 

S4 SEEK ERROR When set, the desired track was not verified. This bit is reset to 0 when updated 

S3 CRC ERROR CRC encountered in ID field. 

S2 TRACK 00 When set, indicates Read/Write head is positioned to Track 0 This bit is an inverted 
copy of the TROO input 

S1 INDEX !'.'{hen set, indicates index mark detected from drive This bit is an inverted copy of the 
IP input 

SO BUSY When set command is in progress When reset no command is in progress 

21 



STATUS FOR TYPE II AND Ill COMMANDS 
BIT NAME MEANING 

87 NOT READY This bit when set indicates the drive is not ready When reset, it indicates that the drive 
is ready. This bit is an inverted copy of the Ready input and 'ored' with MR The Type II 
and Ill Commands will not execute unless the drive is ready. 

86 WRITE PROTEC1 On Read Record: Not Used On Read Track: Not Used On any Write: It indicates a 
Write Protect This bit is reset when updated. 

85 RECORD TYPE/ On Read Record: It indicates the record-type code from data field address mark 
WRITE FAULT 1 = Deleted Data Mark. 0 = Data Mark On any Write: It indicates a Write Fault This bit 

is reset when updated. 

84 RECORD NOT When set, it indicates that the desired track, sector, or side were not found This bit is 
FOUND (RNF) reset when updated. 

83 CRC ERROR If 84 is set, an error is found in one or more ID fields; otherwise it indicates error in 
data field. This bit is reset when updated. 

82 LOST DATA When set, it indicates the computer did not respond to DR0 in one byte time This bit is 
reset to zero when updated. 

81 DATA REQUEST This bit is a copy of the ORO output When set, it indicates the DR is full on a Read 
Uperat1on or me UR is emµly 011 a Vv,ilt::: u1Jc:1aLiuil Thi;:; blt l::; ;c::;c~ tc ::8~C •.·.rhcn up-
dated. 

SO BUSY When set, command is under execution When reset, no command is under execution 

ELECTRICAL CHARACTERISTICS 

Absolute Maximum Ratings 
Voo with repect to Vss(ground): + 15 to -0.3V 
Voltage to any input with respect to Vss + 15 to -0..3V 
Ice = 60 MA (35 MA nominal) 
loo = 15 MA (10 MA nominal) 

OPERATING CHARACTERISTICS (DC) 

C1N & Gour = 15 pF max with all pins grounded except 
one under test 

Operating temperature 0°c to 10°c 
Storage temperature = - 55°C to + 125°C 

TA = 0°C to 70°C, Voo = + 12V ± 6V, Vss = OV, Vee = + 5V ± .25V 

SYMBOL CHARACTERISTIC MIN. MAX. UNITS CONDITIONS 

Ill Input Leakage 10 µA V1N = Voo .. 
lo, Output Leakage 10 µA Vom = Voo 
V1H Input High Voltage 26 V 
Vil Input Low Voltage OB V 
VoH Output High Voltage 28 V lo= -100µA 
Vo, Output Low Voltage 045 V lo 16mA" 
Po Power Dissipation 0.6 w 

·1192and 1794 lo= 1 o mA 
• ·Leakage conditions are for input pins without internal pull-up resistors Pins 22, 23, 33, 36, and 37 have pull-up resistors 
See Tech Memo #115 for testing procedures 

22 



40 LEAD CERAMIC "A" or "AL" 

[ 

150MAX 015MIN 

TWWmMJVWJV1 ~~i=i----~ [,.._ '°JL . o~, ·I I .. '¼f 1-~j TYP 062 _., r-- 690 

014 

-021 

40 LEAD CERDIP "CL" 

175 

MAX 040 MIN ~ 620 ,---2,060 . MAX * rc----MAX-----.11~'20MIN 
t~ilffllV~+:= ~ 
-,,.I I- IOO;JYP L ~ ...j f..- T ~69~ 

23 

014 

02' 

40 LEAD RELPACK "B" or "BL" 

40 LEAD PLASTIC "P" or "PL" 



lnformatmn lurnished by Western Digital Corporation 1s believed to be accurate and reliable However. no responsibility is assumed by Western Dig ital 
Corporation !or its use; nor for any infringements ol patents or other rights of third parties which may result lrom its use No license is granted by 
impl1callon or otherwise under any patent or patent rights ol Western Digital Corporation Western Dlgital Corporation reserves the right to change 
specilications at anyl!me without notice 

WESTERN DIGITAL 2445 McCABE WAY 
C O • p " • , 0 N IRVINE, CALIFORNIA 92714 (714) 557-3550, lWX 910-595-1139 

24 Printed'" u SA 



TECHNICAL MEMO 

MEMO: 169 

DEVICE: WD1770/1772/1773 

WESTERN D.f.GITA.!. 
CtJRPORATION 

2445 McCabe Way 
Irvine California 92714 
(714) 557-3550 TWX 910-595-1139 

TITLE: Preliminary Data Sheet Update 

DATE: 8/29/83 

The following information represents updates to the 
current WD1770/72/73 Preliminary Data sheet. These updates 
are performance enhancements. 

l. 

2. 

3. 

4. 

TRE (Page 19) Changed from MIN 150NS to MIN 200NS. 

TAH (Page 19) Changed from MIN 20NS to l0NS. 

TWE (Page 19) Changed from MIN 150NS to MIN 200NS. 

H bit in Command (Page 6 last paragraph) 
Changed from: 

Changed to: 

"If the hFlag is set and motor on 
line (Pin 20)" 

"If the hFlag is NOT set and motor 
on line (Pin 20)_"_ 



WESTERN DIGITAL 
C 0 R p D R A T D N 

WD1773 5¼" Floppy Disk Controller/Formatter 

FEATURES 
• 100% SOF1WARE COMPATIBILITY WITH 

WD1793 

• BUILT-IN DATA SEPARATOR 
BUILT-IN WRITE PRECOMPENSATION 

• SINGLE (FM) AND DOUBLE (MFM) DENSITY 

• 28 PIN DIP, SINGLE + 5V SUPPLY 
• TTL COMPATIBLE INPUTS/OUTPUTS 

• 128, 256, 512 OR 1024 SECTOR LENGTHS 
• 8-BIT Bl-DIRECTIONAL HOST INTERFACE 

DESCRIPTION 
The WD1773 is an MOS/LSI device which performs 
the functions of a 5¼" Floppy Disk Controller/ 
Formatter. It is fully software compatible with 
the Western Digital WD1793-02, allowing the 
designer to reduce parts count and board size on an 
existing WD1793 based design without software 
modifications 

With the exception of the enable Precomp/Ready 
line, the WD1773 is identical to the WD1770 con• 
troller. This line serves as both a READY input from 
the drive during READ/STEP operations, and as a 
Write Precompensation enable during Write opera
tions A built-in digital data separator virtually 
eliminates all external components associated with 
data recovery in previous designs. 

The WD1773 is implemented in NMOS silicon gate 
technology and is available in a 28 pin, dual-in-line 
package 

cs 
RIW 

AO 
Al 

DALO 
OAL1 
OAL2 

DAL3 
DAL4 
............ '" 
DAL6 11 
OAL7 

MA 
GND 

PIN DESIGNATION 

January, 1984 



PIN DESCRIPTION 

PIN 
NUMBER PIN NAME MNEMONIC 

1 CHIP SELECT CS 

2 READ/WRITE RfJiJ 

3.4 ADDRESS 0, 1 AO, A 1 

5-12 DATA ACCESS LINES DALO-DAL? 
0THROUGH7 

13 MASTER RESET MR 

14 GROUND GND 

15 POWER SUPPLY Vee 
16 STEP STEP 

17 DIRECTION DIRC 

18 CLOCK CLK 

19 READ DATA RD 

20 ENABLE PRECOMP/ ENP/RDY 
READY LINE 

21 WRITE GATE WG 

22 WRITE DATA WD 

26 DOUBLE DENSITY ODEN 
ENABLE 

2 

FUNCTION 

A logic low on this input selects the chip and 
enable Host communication with the device. 

A logic high on this input controls the 
placement of data on the DO-ITT lines from a 
selected register, while a logic low causes a 
write operation to a selected register. 

These two inputs select a register to Read/Write 
data: 

CS A1 
0 
0 
0 
0 

0 
0 
1 
1 

AO R/W = 1 
0 Status Reg 
1 Track Reg 
0 Sector Reg 
1 Data Reg 

Command Reg 
Track Reg 
Sector Reg 
Data Reg 

Eight bit bidirectional bus used for transfer of 
data, control, or status. This bus is enabled by 
CS and Riw Each line will drive one TTL load 

A logic low pulse on this line resets the device 
and initializes the status register Internal pull
up. 

Ground 

+ 5V ± 5% power supply input 

The Step out~ contains a pulse for each step 
of the drive's R/W head 

The Direction output is high when stepping in 
towards the center of the diskette, and low 
when stepping out 

This input requires a free-running 40 to 60% 
duty cycle clock (for internal timing) at 8 MHZ 
±1% 

This active low input is the raw data line 
containing t:>oth clock and data pulses from the 
drive 

Serves as a READY input from the drive during 
READ/STEP operations and as a Write Precomp 
enable during write operations 

This output is made valid prior to writing on the 
diskette. 

FM or MFM clock and data pulses are placed on 
this line to be written on the diskette 

This active low input informs the WD1773 that 
the drive's Riw heads are positioned over Track 
zero 

This active low input informs the WD1773 when 
the physical index hole has been encountered 
on the diskette 

This input is sampled whenever a Write 
Command is received. A logic low on this 
line will prevent any Write Command from 
executing .. Internal pull-up 

This input pin selects either single (FM) or 
double (MFM) density. When DDEN = 0, double 
density is selected. Internal pull-up 



PIN DESCRIPTION (CONTINUED) 

PIN 
NUMBER PIN NAME MNEMONIC 

27 DATA REQUEST DRQ 

28 INTERRUPT REQUEST INTRO 

WD1773 SYSTEM BLOCK DIAGRAM 

ARCHITECTURE 
The Floppy Disk Formatter block diagram is ii• 
lustrated on page 4. The primary sections include 
the parallel processor interface and the Floppy Disk 
interface. 

Data Shilt Register - This 8-bit register assembles 
serial data from the Read Data input (RD) during Read 
operations and transfers serial data to the Write Data 
output during Write operations. 

Data Register •- This 8-bit register is used as a 
holding register during Disk Read and Write opera. 
tions. In Disk Read operations, the assembled data 
byte is transferred in parallel to the Data Register 
from the Data Shift Register. In Disk Write operations, 
Information is transferred in parallel from the Data 
Register to the Data Shift Register. 

When executing the Seek command, the Data Regis
ter holds the address of the desired Track position. 

3 

FUNCTION 

This active high output indicates that the Data 
Register is full (on a Read) or empty (on a Write 
operation) 

This active high output is set at the completion 
of any command or reset a read of the Status 
Register. 

This register is loaded from the DAL and gated onto 
the DAL under processor control 

Track Register - This 8-bit register holds the track 
number of the current Read/Write head position. It is 
incremented by one every time the head is stepped in 
and decremented by one when the head is stepped 
out (towards track 00). The contents of the register 
are compared with the recorded track number in the 
ID field during disk Read, Write, and Verify opera
tions. The Track Register can be loaded from or 
transferred to the DAL This Register should not be 
loaded when the device is busy. 
Sector Register (SR) - This 8-bit register holds the 
address of the desired sector position. The contents 
of the register are compared with the recorded sector 
number In the ID field during disk Read or Write 
operations. The Sector Register contents can be 
loaded from or transferred to the DAL This register 
should not be loaded when the device is busy. 

Command Register (CR) - This 8-bit register holds 
the command presently being executed. This register 
should not be loaded when the device is busy unless 
the new command Is a force interrupt. The command 
register can be loaded from the DAL, but not read 
onto the DAL 

Status Register (STR) - This 8-bit register holds 
device Status information. The meaning of the Status 
bits is a function of the type of command previously 
executed. This register can be read onto the DAL, but 
not loaded from the DAL 

CRC Logic - This logic is used to check or to 
generate the 16-bit Cyclic Redundancy Check (CRC). 
The polynomial is: 
G(x) = x16 + x12 + x5 + 1. 
The CRC includes all information starting with the 
address mark and up to the CRC characters. The 
CRC register is preset to ones prior to data being 
shifted through the circuit 

Arithmetic/Logic Unit (ALU) - The ALU is a serial 
comparator, incrementer, and decrementer and is 
used for register modification and comparisons with 
the disk recorded ID field. 



DATA 
REG 

DRQ 

INTRO 

MR 
cs 
RIW COMPUTER PLA DISK -

STATUS 
REG 

WO 

ENP 

WG 

WPRT 

Ti' 
TAOO 

INTERFACE 
CONTROL 

CONTROL 
CONTROL 

INTERFACE 
AO CONTROL (240X 19) CONTROL STEP 

A1 DIRC 

ROY 

CLK(8 MHZ) 

= 
WD1773 BLOCK DIAGRAM 

Timing and Control - All computer and Floppy Disk 
interface controls are generated through this logic. 
The internal device timing is generated from an exter
nal crystal clock. The WD1773 has two different 
modes of operation according to the state of ODEN. 
When ODEN = 0, double density (MFM) is enabled. 
When ODEN = 1, single density is enabled 

AM Detector -· The address mark detector detects 
ID, data and index address marks during read and 
write operations 

Data Separator - A digital data separator consisting 
of a ring shift register and data window detection 
logic provides read data and a recovery clock to the 
AM detector. 

4 

PROCESSOR INTERFACE 
The interface to the processor is accomplished 
through the eight Data Access Lines (DAL) and 
associated control signals. The DAL are used to 
transfer Data, Status, and Control words out of, or in
to the WD1773. The DAL are three state buffers that 
are enabled as output drivers when Chip Select (CS) 
and R/W = 1 are active or act as input receivers when 
CS and R/W = 0 are active. 
When transfer of data with the Floppy Disk Controller 
is required by the host processor, the device address 
is decoded and CS is made low. The address bits A 1 
and AO, combined with the signal R/W during a Read 
operation or Write operation are interpreted as select
ing the following registers: 



A1 · AO 
0 0 
0 1 
1 0 
1 1 

READ (R/W = 1) 
Status Register 
Track Register 
Sector Register 
Data Register 

WRITE (R/W - 0) 
Command Register 
Track Register 
Sector Register 
Data Register 

During Direct Memory Access (OMA) types of data 
transfers between the Data Register of the WD1773 
and the processor, the Data Request (DRO) output 
1s used rn Data Transfer control. This signal also 
appears as status bit 1 during Read and Write 
operations 

On Disk Read operations the Data Request is acti
vated (set high) when an assembled serial input byte 
is transferred in parallel to the Data Register. This bit 
1s cleared when the Data Register is read by the pro
cessor. If the Data Register is read after one or more 
characters are lost, by having new data transferred in
to the register prior to processor reaoou1, 1he l.u,;l 
Data bit is set in the Status Register. The Read opera
tions continues until the end of sector is reached 

On Disk Write operations the Data Request is ac
tivated when the Data Register transfers its contents 
to the Data Shift Register, and requires a new data 
byte. It is reset when the Data Register is loaded with 
new data by the processor. If new data is not loaded 
at the time the next serial byte is required by the 
Floppy Disk, a byte of zeroes is written on the 
diskette and the Lost Data is set in the Status 
Register. 

At the completion of every command an INTRO is 
generated. INTRO is reset by either reading the 
status register or by loading the command register 
with a new command. In addition, INTRO is gen
erated if a Force Interrupt command condition is met 

The WD1773 has two modes of operation according 
to the state DDEN (Pin 26) .. When DDEN = 1, single 
density is selected. In either case, the CLK input (Pin 
18) is at 8 MHZ 

GENERAL DISK READ OPERATIONS 
Sector lengths of 128,256,512 or 1024 are obtainable 
in either FM or MFM fom1ats. For FM, DDEN should 
be placed to logical "1'.' For MFM formats, ODEN 
should be placed to a logical "0!' Sector lengths are 
determined at format time by the fourth byte in the 
"ID"field 

SECTOR LENGTH TABLE 
SECTOR LENGTH NUMBER OF BYTES 

FIELDIHEX) IN SECTOR (DECIMAL) 
00 128 
01 256 
02 512 
03 1024 

The number of sectors per tract as far as the WD1773 
is concerned can be from 1 to 255 sectors The 

5 

number of tracks as far as the WD1773 is concerned 
is from 0 to 255 tracks. 

GENERAL DISK WRITE OPERATION 
When writing is to take place on tt1e diskette the 
Write Gate (WG) output is activated, allowing current 
to flow into the Read/Write head As a precaution to 
erroneous writing the first data byte must be loaded 
into the Data Register in response to a Data Request 
from the device before the Write Gate signal can be 
activated 

Writing is inhibited when the Write Protect input is a 
logic low, in which case any Write command is im
mediately terminated, an interrupt is generated and 
the Write Protect status bit is set 

For Write operations, the WD1773 provides Write 
Gate (Pin 21) to enable a Write condition, and Write 
Data (Pin 22) which consists of a series of active high 
pu1~1:"c:: ThPSP fHIISAR r.nntain hath Clock and Data in· 
formation in FM and MFM. Write Data provides the 
unique missing clock patterns for recording Address 
Marks 

If Precomp Enable (ENP) is active when WG is 
asserted, automatic Write Precompensation takes 
place. The outgoing Write Data stream is delayed or 
advanced from nominal by 125 nanoseconds ac
cording to the following table: 

PATTERN 
X 1 1 
X 0 1 
0 0 0 
1 0 0 

0 
1 
1 
0 

MFM FM 
Early N/A 
Late NIA 
Early N/A 
Late N/A 

Next Bit to be sent 
Current Bit sending 
Previous Bits sent 

Precompensation is typically enabled on the inner
most tracks where bit shifts usually occur and bit 
density is at its maximun 

COMMAND DESCRIPTION 
The WD1773 will accept eleven commands. Com
mand words should only be loaded in the Command 
Register when the Busy status bit is off (Status bit 0) 
The one exception is the Force Interrupt command 
Whenever a command is being executed, the Busy 
status bit is set When a command is completed an 
interrupt is generated and the Busy status bit is re~et. 
The Status Register indicates whether the completed 
command encountered an error or was fault free. For 
ease of discussion, commands are divided into four 
types. Commands and types are summarized in 
Table 1 



TABLE 1. COMMAND SUMMARY 

BITS 
TYPE COMMAND 7 6 5 4 3 2 1 0 

I Restore 0 0 0 0 h V r1 ro 
Seek 0 I 0 0 1 h V f1 ro 

I Step 0 0 1 T h V r1 ro 
I Step-in 0 1 0 T h V r1 ro 
I Step-out 0 1 1 T h V r1 ro 
II Read Sector 1 0 0 m L E u 0 
II Write Sector 1 0 1 m L E u ao 
Ill Read Address 1 1 0 0 0 E u 0 
Ill Read Track 1 1 1 0 0 E u 0 
Ill Write Track 1 1 1 1 0 E u 0 
IV Force Interrupt 1 1 0 1 13 12 11 lo 

FLAG SUMMARY 

COMMAND BIT 
TYPE NO{S) DESCRIPTION 

I 0, 1 r1 ro = Stepping Motor Rate 
See Table 3 for Rate Summary 

I 2 V = Track Number Verify Flag V = 0, No verify 
V = 1, Verify on destination track 

I 3 h = Don't Care 

I 4 T = Track Update Flag T = 0, No update 
T = 1, Update track register 

II 0 ao = Data Address Mark ao = 0, FB (DAM) 
ao = 1, F8 (deleted DAM) 

II 1 C = Side Compare Flag C = o, Disable side compare 
C = 1, Enable side compare 

11&111 1 U = Update SSO u = 0, Update SSO to O 
u = 1, Update SSO to 1 

11&111 2 E = 15 MS Delay E = 0, No 30 MS delay 
E = 1, 15 MS delay 

II 3 S = Side Compare Flag s = 0, Compare for side 0 
s = 1, Compare for side 1 

II 3 L = Sector Length Flag 
LSB's Sector Length in ID Field 

00 01 10 11 
L =O 256 512 1024 128 
L = 1 128 256 512 1024 

II 4 m = Multiple Record Flag m = 0, Single record 
m = 1, Multiple records 

IV 0-3 Ix = Interrupt Condition Flags 
lo = 1 Not Ready To Ready Transition 
11 = 1 Ready To Not Ready Transition 
12 = 1 Index Pulse 
13 = 1 Immediate Interrupt, Requires A Reset 
13.11 = 0 Terminate With No Interrupt (INTRO) 

• NOTE: See Type IV Command Descnpt,on for further information 

6 



TYPE I COMMANDS 

The Type I Commands include the Restore, Seek, 
Step, Step-In, and Step-Out commands Each of the 
Type I Commands contains a rate field (ro r1), which 
determines the stepping motor rate as defined in 
Table3 

A 4 µs (MFM) or 8 µs (FM) pulse is provided as an 
output to the drive. For every step pulse issued, the 
drive moves one track location in a direction deter
mined by the direction output. The chip will step the 
drive in the same direction it last stepped unless the 
command changes the direction. 

The Direction signal is active high when stepping in 
and low when stepping out. The Direction signal is 
valid 24 or 48 µsec before the first stepping pulse is 
oenerated 

When a Seek, Step or Restore command is executed 
an optional verification of Read-Write head position 
can be performed by settling bit 2 (V = 1) in the 
command word to a logic l The verification opera
tion begins at the end of the 30 msec settling time. 
The track number from the first encountered ID Field 
is compared against the contents of the Track Regis
ter. If the track numbers compare and the ID Field 
Cyclic Redundancy Check (CRC) is correct, the verily 
operation is complete and an INTRO is generated 
with no errors. If there is a match but not a valid CRC 
the CRC error status bit is set (Status bit 3), and the 
next encountered ID field is read from the disk for the 
verification operation. 

The WD1773 must find an ID field with correct track 
number and correct CRC within 5 revolutions of the 
media; otherwise the seek error is set and an INTRO 
is generated. If V = 0, no verification is performed 

RESTORE (SEEK TRACK 0) 

Upon _receipt of thi~nmand the Track 00 (TROO) 
input ,s sampled If TROO is active low indicating the 
Read-Write head is positioned over track O, the Track 
Register is loaded with zeroes and an interrupt is gen
erated. II TROO is not active low, stepping pulses at a 
rate specified by the r1 ro field are issued until the 
TROO input is activated. At this time the Track 
Register is loaded with zeroes and an interrupt is 
generated. II the TROO input does not go active low 
after 255 stepping pulses, the WD1773 terminates 
operation, interrupts, and sets the Seek error status 
bit, providing the V flag is set A verification operation 
also takes place if the V flag is set Note that the 
Restore command is executed when MR goes from 
an active to an inactive state and that the DRO pin 
stays low 

SEEK 
This command assumes that the Track Register 
contains the track number of he current position of 
the Read-Write head and the Data Register contains 
the desired track numbec The WD1773 will update 
the Track register and issue stepping pulses in the 
appropriate direction until the contents of the Track 

register are equal to the contents of the Data Reg
ister (the desired track location) A verification 
operation takes place if the V flag is on An interrupt 
is generated at the completion of the command 
Note: When using multiple drives, the track register 
must be updated for the drive selected before seeks 
are issued. 

STEP 

Upon receipt of this command, the WD1773 issues 
one stepping pulse to the disk drive. The stepping 
motor direction is the same as in the previous step 
command. After a delay determined by the r1 ro field, 
a verification takes place ii the V flag is on. If the U 
flag is on, the Track Register is updated. An interrupt 
is generated at the completion of the command 

STEP-IN 

Upon receipt of this command, the WD1773 issues 
one stepping pulse in the direction towards track 76. 
II the U flag is on, the Track Register is incremented 
by one. Alter a delay determined by the r1ro field, a 
verification takes place if the V flag is ort An interrupt 
is generated at the completion of the command 

STEP-OUT 

Upon receipt of this command, the WD1773 issues 
one stepping pulse in the direction towards track 0. II 
the U flag is on, the Track Register is decremented by 
one. Alter a delay determined by the r1 ro field, a 
verification takes place ii the V flag is on .. An interrupt 
is generated at the completion of the command. 

TYPE II COMMANDS 

The Type II Commands are the Read Sector and Write 
Sector commands. Prior to loading the Type II Com
mand into the Command Register, the computer 
rnust load the Sector Register with the desired sector 
number Upon receipt of the Type II command, the 
busy status Bit is set. The E flag is still active pro
viding a delay of 1 to 30 msec for head settling time 

When an ID field is located on the disk, the WD1773 
compares the Track Number on the ID field with the 
Track Register II there is not a match, the next en
countered ID field is read and a comparison is again 
made II there was a match, the Sector Number of the 
ID field is compared with the Sector Register. II there 
is not a Sector match, the next encountered ID field 
is read off the disk and comparisons again made. If 
the ID field CRC is correct, the data field is then 
located_ and will be either written into, or read from 
depending upon the command. The WD1773 must 
find an ID field with a Track number Sector number 
side number, and CRC within live r~volutions of the 
disk; otherwise, the Record not found status bit is set 
(Status bit 3) and the command is terminated with an 
interrupt. 

Each of the Type II Commands contains an (m) flag 
which determines ii multiple records (sectors) are to 
be read or written, depending upon the command. If 
m = 0, a single sector is read or written and an inter-

11 



TYPE I COMMAND FLOW 
rupt is generated at the completion of the command. 
if m = 1, multiple records are read or written with the 
sector register internally updated so that an address 
verification can occur on the next record. The 
WD1773 will continue to read or write multiple 
records and update the sector register in numerical 
ascending sequence until the sector register ex
ceeds the number of sectors on the track or until the 
Force Interrupt command is loaded into the Com
mand Register, which terminates the command and 
generates an interrupt. 

For example: If the WD1773 is instructed to read 
sector 27 and there are only 26 on the track, the 
sector register exceeds the number available. The 
WD1773 will search for 5 disk revolutions, interrupt 
out, reset busy, and set the record not found status 
bit 

The Type II commands for WD1773 contain side 
compare flags. When C = O (Bit 1) no side compar
ison is made. When C = 1, the LSB of the side num-

8 

TYPE I COMMAND FLOW 
ber is read off the ID Field of the disk and compared 
with the contents of the (S) flag (Bit 3). If the S flag 
compares with the side number recorded in the ID 
field, the WD1773 continues with the ID search. If a 
comparison is not made within 6 index pulses, the 
interrupt line is made active and the Record-Not
Found status bit is set 

READ SECTOR 
Upon receipt of the Read Sector command, the Busy 
status bit is set, and when an ID field is encountered 
that has the correct track number, correct sector 
number, correct side number, and correct CRC, the 
data field is presented to the computer. The Data 
Address Mark of the data field must be found within 
30 bytes in single density and 43 bytes in double 
density of the last ID field CRC byte; if not, the ID 
field is searched for and verified again followed by 
the Data Address Mark search. If after 5 revolutions 
the DAM cannot be found, the Record Not Found 
status bit is set and the operation is terminated 



NOTE: fi:fffi ::: 0, THERE IS NO 15MS OELAY 
iFfEsf::: 1 ANOCLK:. 1 MHz THERELSA30MSOELAY 

TYPE I COMMAND FLOW 

When the first character or byte of the data field has 
been shifted through the DSR, it is transferred to the 
DR, and DRQ is generated. When the next byte is ac
cumulated in the DSR, it is transferred to the DR and 
another DRQ is generated. If the Computer has not 
read the previous contents of the DR before a new 
character is transferred that character is lost and the 
Lost Data Status bit is set This sequence continues 
until the complete dta field has been inputted to the 
computeL If there Is a CRC error at the end of the 
data field, the CRC error status bit is set, and the 
command is terminated (even if it is a multiple record 
command). 

At the end of the Read operation, the type of Data 
Address Mark encountered in the data field is 
recorded in the Status Register (Bit 5) as shown 
below: 

STATUS 
BIT5 

1 Deleted Data Mark 
0 Data Mark 

9 

WRITE SECTOR 
Upon receipt of the Write Sector command, the Busy 
status bit is set When an ID field is encountered that 
has the correct track number, correct sector number, 
correct side number, and correct CRC, a DRQ is gen• 
erated. The WD1773 counts off 11 bytes in single 
density and 22 bytes in double density from the CRC 
field and the Write Gate 0/'IG) output is made active if 
the DRQ is serviced (Le .. , the DR has been loaded by 

SET BUSY, RESET ORO, LOST 
DATA, RECORD NOT FOUNO & 

STATUS BITS 5 & 6 INTRO 

NOTE: fi:TEST :: 0 THERE IS NO 15MS DELAY 
iF TESf = 1 ANO CLK :: 1 MHz THERE IS A 30MS DELAY 

TYPE II COMMAND FLOW 
the computer). If DRQ has not been serviced, the 
command is terminated and the Lost Data status bit 
is set. If the DRQ has been serviced, the WG is made 
active and six bytes of zeroes in single density and 12 
bytes in double density are then written on the disk. 
At this time the Data Address Mark is then written on 



the disk as determined by the ao field of the 
command as shown below: 

ao 

1 
0 

Data Address Mark (Bit 0) 
Deleted Data Mark 
Data Mark 

The WD1773 then writes the data field and gener
ates DRQ's to the computer. If the DRQ is not 
serviced in time for continuous writing the Lost 
Data Status Bit is set and a byte of zeroes is 
written on the disk. The command is not ter
minated. After the last data byte has been written 
on the disk, the two-byte CRC is computed 
internally and written on the disk followed by one 
byte of logic ones in FM or in MFM. The WG 
output is then deactivated. The INTRO will set 48 
µsec (MFM) or 96 µsec (FM) after the last CRC 
byte is written. For partial sector writing, the 
proper method is to write the data and fill the 
balance with zeroes By letting the chip fill the 

NO 

NO 

INTRO. RESET BUSY 
SET RECORD.NOT FOUND 

BRING IN SECTOR LENGTH FIELD 
STORE LENGTH IN INTERNAL 

REGISTER 

SET CRC RESET 
STATUS ERROR CRC 

zeroes, errors may be masked by the lost data 
status and improper CRC Bytes. 

TYPE Ill COMMANDS 

READ ADDRESS 

Upon receipt of the Read Address command, the 
Busy Status Bit is set The next encountered I.D 
field is then read in from the disk, and the six 
data bytes of the ID field are assembled and 
transferred to the DR, and a DRQ is generated for 
each byte. The six bytes of the ID field are 
shown below: 

TRACK 
ADDR 

SIDE SECTOR 
NUMBER ADDRESS 

2 3 

SECTOR CRC CRC 
LENGTH 1 2 

4 5 6 

TYPE II COMMAND FLOW TYPE II COMMAND FLOW 

10 



TYPE II COMMAND 

Although the CRC characters are transferred to 
the computer, the WD1773 checks for validity and 
the CRC error status bit is set if there is a CRC 
error. The Track Address of the ID field is written 
into the sector register so that a comparison can 
be made by the user. At the end of the operation 
an interrupt is generated and the Busy Status is 
reset 

READ TRACK 
Upon receipt of the READ track command, the Busy 
Status bit is set Reading starts with the leading edge 
of the first encountered index pulse and continues 
until the next index pulse. All Gap, Header, and data 
bytes are assembled and transferred to the data reg
ister and DRQ's are generated for each byte. The 
accumulation of bytes is synchronized to each ad
dress mark encountered. An interrupt is generated at 
the completion of the command. 

This command has several characteristics which 

11 

make it suitable for diagnostic purposes. They are: 
the Read Gote is not activated during the command; 
no CRC checking is performed; gap information is 
included in the data stream; the internal side com
pare is not performed; and the address mark detector 
is on for the duration of the command. Because the 
A.M. detector is always on, write splices or noise may 
cause the chip to look for an A.M If an address mark 
does not appear on schedule the Lost Data status 
flag is set 

The ID AM., ID field, ID CRC bytes, DAM, Data, and 
Data CRC Bytes for each sector will be correct. The 
Gap Bytes may be read incorrectly during write-splice 
time because of synchronization. 

WRITE TRACK FORMATTING THE DISK 
(Refer to section on Type 111 commands for flow 
diagrams) 

Formatting the disk is a relatively simple task when 
operating programmed 1/0 or when operating under 
OMA with a large amount of memory. Data and gap 
l11fcr111a.!iv;. 111u::;! b~ ;::;:8·:!C:;d 2.t th~ computer lnt12r
face. Formatting the disk is accomplished by posi
tioning the R/W head over the desired track number 
and issuing the Write Track command 

Upon receipt of the Write Track command, the Busy 
Status bit is set. Writing starts with the leading edge 
of the first encountered index pulse and continues 
until the next index pulse, at which time the interrupt 
is activated The Data Request is activated immedi
ately upon receiving the command, but writing will 
not start until after the first byte has been loaded into 
the Data Register If the DR has not been loaded by 
the time the index pulse is encountered the opera
tion is terminated making the device Not Busy, the 
Lost Data Status Bit is set, and the Interrupt is ac
tivated. If a byte is not present in the DR when 
needed, a byte of zeroes is substituted. 

This sequence continues from one index mark to the 
next index mark. Normally, whatever data pattern ap
pears in the data register is written on the disk with a 
normal clock pattern. However, if the WD1773 de
tects a data pattern of F5 thru FE in the data register, 
this is interpreted as data address marks with 
missing clocks or CRC generation 

The CRC generator is initialized when any data byte 
from FB to FE is about to be tranferred from the DR to 
the DSR in FM or by receipt of F5 in MFM. An F7 pat
tern will generate two CRC characters in FM or MFM. 
As a consequence, the patterns F5 thru FE must not 
appear in the gaps, data fields, or ID fields .. Also, 
CRC's must be generated by an F7 pattern. 

Disks may be formatted in IBM 3740 or System 34 
formats with sector lengths of 128, 256, 512, or 1024 
bytes 

TYPE JV COMMANDS 
The Forced Interrupt command is generally used to 



terminate a multiple sector read or write command or 
to insure Type I status in the status register. This 
command can be loaded into the command register 
at any time. If there is a current command under 
execution (busy status bit set) the command will be 
terminated and the busy status bit reset 

The lower four bits of the command determine the 
conditional interrupt as follows: 

lo = Not-Ready to Ready Transition 
11 = Ready to Not-Ready Transition 
12 = Every Index Pulse 
13 = Immediate Interrupt 

~-c '"'""" ) 

TYPE Ill COMMAND WRITE TRACK 

12 

The conditional interrupt is enabled when the cor
responding bit positions of the command (13 • IQ) are 
set to a 1.. Then, when the condition for interrupt is 
met, the INTRO line will go high signifying that the 
condition specified has occurred. If 13 - lo are all set 
to zero (HEX DO), no interrupt will occur but any 
command presently under execution will be immedi
ately terminated. When using the immediate interrupt 
condition (13 = 1) an interrupt will be immediately 
generated and the current command terminated. 
Reading the status or writing to the command 
register will not automatically clear the interrupt The 
HEX DO is the only command that will enable the 

WRIT£2CRC 
CHARS Cll\ a Ff 

WRIT£ ~C 
ClK ~ 07 

WRllE 
1!.YTEOFZEROS 
SETOAlAlOSI 

W/1ilEAI' ll!MFM 
WITH MISSIUC CLOCK 

lf!ll!AllZECRC 

\l/1111ECZ ,,.Mn_. 
WITHMISSUJGClOC!\ 

TYPE Ill COMMAND WRITE TRACK 



immediate interrupt (HEX D8) to clear on a sub
sequent load command register or read status 
register operation. Follow a HEX D8 with DO com
mand 

Wait 16 µsec (double density) or 32 µsec (single 
density before issuing a new command after issuing 
a forced interrupt Loading a new command sooner 
than this will nullify the forced interrupt. 

Forced interrupt stops any command at the end of an 
internal micro-instruction and generates INTRO 
when the specified condition is met. Forced interrupt 
will wait until ALU operations in progress are 
complete (CRC calculations, compares, etc.) 

More than one condition may be set at a time. If for 
example, the READY TO NOT-READY condition (11 
= 1) and the Every Index Pulse (12 = 1) are both set, 
the resultant command would be HEX "DA". The 
"OR" function is performed so that either a READY 
TO NOT-READY or the next Index Pulse will cause an 
interrupt condition 

STATUS REGISTER 

Upon receipt of any command, except the Force 
Interrupt command, the Busy Status bit is set and the 
rest of the status bits are updated or cleared for the 
new command. If the Force Interrupt Command is re
ceived when there is a current command under exe
cution, the Busy status bit is reset, and the rest of the 
status bits are unchanged.. If the Force Interrupt com
mand is received when there is not a current com
mand under execution, the Busy Status bit is reset 
and the rest of the status bits are updated or cleared 
In this case, Status reflects the Type I commands. 

The user has the option of reading the status register 
through program control or using the DRQ line with 
DMA or interrupt methods When the Data register is 
read the DRQ bit in the status register and the DRQ 
line are automatically reset. A write to the Data 
register also causes both DRQ's to reset 

The busy bit in the status may be monitored with a 
user program to detemtine when a command is com
plete, in lieu of using the INTRO line. When using the 
I NTRQ, a busy status check is not recommended be
cause a read of the status register to determine the 
condition of busy will reset the INTRO line. 

The format of the Status Register is shown below: 

BITS 
7 6 5 4 3 2 0 

S7 S6 S5 S4 S3 S2 S1 so 
Status varies according to the type of command exe
cuted as shown in Table 4. 

13 

Because of internal sync cycles, certain time delays 
must be observed when operating under pro
grammed 1/0. They are: (times double when clock = 
1 MHz) 

Delay Req'd. 
Operation Next Operation FM MFM 

Write to Read Busy Bit 48µs I 24µs 
I 

Command Reg. (Status Bit 0) 
! Write to Read Status 64µ5 : 32µ5 

Command Reg. Bits 1-7 I 
Write Read Any 32µs I 16µs 

I 

Register Register I 

IBM 3740 FORMAT - 128 BYTES/SECTOR 

Shown below is the IBM single-density format with 
128 bytes/sector In order to format a diskette, the 
user must issue the Write Track command, and load 
.die t.iala 1eyi~le1 witi1 ii1e fuiiuwi11y vaiue~. i=u1 eve1y 
byte to be written, there is one Data Request 

NUMBER 
OF BYTES 

40 
6 
1 
~ 

6 
1 
1 
1 
1 
1 
1 

11 
6 
1 

128 
1 

-1l 
247 .. 

FF(or 00)' 
00 

HEX VALUE OF 
BYTE WRITTEN 

FC (Index Mark) 
FF(or 00)' 
00 
FE (ID Address Mark) 
Track Number 
Side Number (00 or01) 
Sector Number(1 thru 1A) 
00 (Sector Length) 
F7 (2 CRC's written) 
FF (or 00)' 
00 
FB (Data Address Mark) 
Data(IBM uses E5) 
F7 (2 CRC's written) 
FF(orOO)' 
FF(orOO)' 

·write bracketed field 26 times 
.. Continue writing until WD1773 interrupts out 

Approx. 247 bytes. 

IBM SYSTEM 34 FORMAT - 256 BYTES/SECTOR 

Shown below is the IBM dual-density format with 256 
bytes/sector. In order to format a diskette the user 
must issue the Write Track command and load the 
data register with the following values. For every byte 
to be written, there is one data request 



ENTER 

'If TEST ~ j. NO DELAY 

INTRO 
RESET BUSY 

READ 
ADDRESS 

If TEST ± 1 and CLK ± 1 MHZ. 30 MS DELAY 

TYPE Ill COMMAND 
Read Track/Address 

14 

SET 
DAO 



SET INTRO 
RESET BUSY 

READ ADDRESS 
SEQUENCE 

RESET BUSY 
SET INTRO 
SET RNF 

SET CRC 
ERROR BIT 

TYPE Ill COMMAND 
Read Track/ Address 

15 

NUMBER 
OF BYTES 

80 
12 
3 
1 

• 50 
-~12~ 

3 
1 
1 
1 
1 
1 
1 

22 
12 
3 
1 

256 
1 

__M 
598·· 

4E 
00 

HEX VALUE OF 
BYTE WRITTEN 

F6 (Writes C2) 
FC (Index Mark) 
4E 
00 
F5(WritesA1) 
FE (ID Address Mark) 
Track Number (0 thru 4C) 
Side Number(O or 1) 
SectorNumber(1 thru 1A) 
01 (Sector Length) 
F7 (2 CRCs written) 
4E 
00 
r~ Cv'v'iiit:~ A ii 
FB (Data Address Mark) 
DATA 
F7 (2 CRCs written) 
4E 
4E 

·write bracketed field 26 times 
··continue writing until WD1773 interrupts out 

Approx. 598 bytes. 

1. NON-IBM FORMATS 

Variations in the IBM formats are possible to a 
limited extent if the following requirements are met: 

1) Sector size must be 128,256,512 of 1024 bytes. 

2) Gap 2 cannot be varied from the IBM format. 

3) 3 bytes of A 1 must be used in MFM. 

In addition, the Index Address Mark is not required 
for operation. Gap 1, 3, and 4 lengths can be as short 
as 2 bytes, however PLL lock up time, motor speed 
variation, write-splice area, etc. will add more bytes to 
each gap to achieve proper operation. It is recom
mended that the IBM format be used for highest 
system reliability 

FM MFM 
Gap I 16 bytes FF 32 bytes4E 

Gap II 11 bytes FF 22 bytes4E 
. 6 bytesOO 12 bytesOO . 3 bytesA1 

Gap1U-• 10 bytes FF 24 bytes4E 
4 bytesOO 8 bytesOO 

3 bytesA1 

Gap IV 16 bytes FF 16 bytes4E 

•Byte counts must be exact 
.. Byte counts are minimum, except exactly 3 bytes 

of A 1 must be written 



16 



DC ELECTRICAL CHARACTERISTICS 

MAXIMUM RATINGS 

Storage Temperature 
Operating Temperature . 

. . - 55•c to + 125•c 
o·c to 7o•c Ambient 

DC OPERATING CHARACTERISTICS 

TA = o·c to 7o•c, Vss = ov, Vee = + sv ± .25V 

SYMBOL CHARACTERISTIC MIN. 

IIL Input Leakage 

IOL Output Leakage 

VIH Input High Voltage 2.0 

VIL Input Low Voltage 

VOH Output High Voltage 2.4 

VOL Output Low Voltage 

Po Power Dissipation 

Rpu Internal Pull-Up 100 

ice Supply Current 75(Typ) 

AC TIMING CHARACTERISTICS 
TA = o·c to 10°c, Vss = ov, Vee = +5V ± ..25V 

Maximum Voltage to Any Input 
with Respect to Vss .. 

MAX. UNITS 
10 µA 

10 µA 
V 

0.8 V 

V 
0.40 V 

.75 w 
1700 µA 
150 mA 

READ ENABLE TIMING - RE such that: R/W = 1, CS = 0. 

SYMBOL CHARACTERISTIC MIN. TYP. MAX. UNITS 
TRE RE Pulse Width of CS 200 nsec 

TORR ORO Reset from RE 25 100 nsec 

TIRR INTRO Reset from RE 8000 nsec 

TDV Data Valid from RE 100 200 nsec 

TDOH Data Hold from RE 50 150 nsec 

. (-15to-0.3V) 

CONDITIONS 

VIN = Vee 

vouT = Vee 

IQ= -100µA 

10 = 1.6mA 

VIN= OV 

CONDITIONS 
CL= 50pf 

CL= 50pf 

CL= 50pf 

Note: ORO and INTRO reset are from rising edge (lagging) of RE, whereas resets are from falling edge (leading) 
ofWE 

WRITE ENABLE TIMING - WE such that: R/W = 0, CS = 0. 

SYMBOL CHARACTERISTIC MIN. TYP. MAX. UNITS CONDITIONS 
TAS Setup ADDR to CS 50 nsec 

TSET Setup RiW to CS 0 nsec 

TAH Hold ADDR from CS 10 nsec 

THLD Hold RiW from cs 0 nsec 

TWE WE Pulse Width 200 nsec 

TDRW ORO Reset from WE 100 200 nsec 

TIRW INTRO Reset from WE 8000 nsec 

TDS Data Setup to WE 150 nsec 

TOH Data Hold from WE 0 nsec 

17 



I 
g~LS ---------~x,----V-AL-1D--~x== 

7 ,~ ~i=,::=:J 
CS ---------,rTAE· TwE/i 

''"~ ~ ~ ~'ew -----~ ~-----
RIW 

--TAs~~ I-- -1 I ~TAH 

AO, A1 

DAO 
------------1 

DAO 1---ToAW-~~-------

REGISTER TIMINGS 

I\ I\ I\ A 

I I I I 
_Ir ·1/2 CLK i\__ 
EARLY TWP 

I I 

Ir I ·1/2 CLKS {\__ 
NOMINAL TWP 

I 
~ 4·112 CLKS f\_ 

LATE TWP 

WRITE DATA TIMING 

18 



WRITE DATA TIMING: 

SYMBOL l"U I\ D._Al"'TCDIC:TII" 

TWG Write Gate to Write Data 

TBC Write Data Cycle Time 

TWF Write Gate off from WD 

TWP Write Data Pulse Width 

INPUT DAlA TIMING: 

SYMBOL 

TPW 

TBC 

CHARACTERISTIC 

Raw Read Pulse Width 

Raw Read Cycle Time 

MISCELLANEOUS TIMING: 

SYMBOL ! CHARACTERISTIC 

TCD1 Clock Duty (low) 

TCD2 Clock Duty (high) 

TSTP Step Pulse Output 

TDIR Dir Setup to Step 

TMR Master Reset Pulse Width 

TIP Index Pulse Width 

MIN. 

MIN. 

200 

3000 

MIN. 

50 

50 

50 

20 

TIP. MAX. 
4 
2 

4,6,8 

4 
2 

820 
690 
570 

1380 

TYP. MAX. 
3000 

TYP. MAX. 
67 

67 

4 
8 
24 
48 

UNITS 
µsec 
µsec 

µsec 

µsec 
µsec 

nsec 
nsec 
nsec 
nsec 

UNITS 

nsec 

nsec 

UNITS 

nsec 

nsec 

µsec 

µsec 

µsec 

µsec 

CONCIT!CNS 

FM 
MFM 

FM 
MFM 

EarlyMFM 
Nominal MFM 

LateMFM 
FM 

CONDITIONS 

CONDITIONS 

(60/40) 

(40/60) 

MFM 
FM 

MFM 
FM 

IP ~---------I VIH 

!--T1p---l 
MA 1---------., ,----------\ VIH 

CLK 

I STEP IN 

DIAC ~g~--------'· ..-R1Ro•-,... 

1-r DI A.Jr STPj-,.----,,-\ T STPI----

STEP 

MISCELLANEOUS TIMING 

19 



Package Diagrams 

155MAX 

.L l.<160 0t5MIN -----1 .620 f--l-
1----MAX-------l>jl 12_0 I MAX l -,WVW\J\Ai\AiWW4-l MIN~ 

035 :!l ~-.I ,oorve_j b-11 oss-ll-- 690 

021~~ 

28 LEAD PLASTIC "R" or "PH" 28 LEAD CERDIP "CH" 

t 
.... _,,, 
MAX-, I 

~ 
~ 690 

Information furnished by Western Digital Corporation Is believed to be accurate and rellable However, no responslbillty Is assumed by Western Dig Ital 
Corporation !or Us use; nor lor any Infringements of patents or other rlghls of third parties which may result from Its use No license is granted by 
lmpllcallon or otheiwlse under any patent or patent rights of Western Digital Corpora!lon Weslern Digital Corporation reserves the right to change 
specifications at anytime without notice 

WESTERN DIGITAL 2445 McCABE WAY 
C O R p O R A ' ' 0 N IRVINE, CALIFORNIA 92714 (714) 863-0102, TWX 910-595-1139 

CP·DS/84221/1 ·84 
Printed m USA 



WESTERN DIGITAL 
CORPORATION 

WD9216-00/WD9216-01 
Floppy Disk Data Separator - FDDS 

FEATURES 
• PERFORMS COMPLETE DATA SEPARATION 

FUNCTION FOR FLOPPY DISK DRIVES 
• SEPARATES FM OR MFM ENCODED DATA 

FROM ANY MAGNETIC MEDIA 
• ELIMINATES SEVERAL SSI AND MSI DEVICES 

NORMALLY USED FOR DATA SEPARATION 
• NO CRITICAL ADJUSTMENTS REQUIRED 
• COMPATIBLE WITH WESTERN DIGITAL 179X, 

176X AND OTHER FLOPPY DISK 
CONTROLLERS 

• +5 VOLT ONLY POWER SUPPLY 
• TTL COMPATIBLE INPUTS AND OUTPUTS 

GENERAL DESCRIPTION 
The Floppy Disk Data Separator provides a low cost 
solution to the problem of converting a single stream 
of pulses from a floppy disk drive into separate Clock 
and Data inputs for a Floppy Disk Controller. 

The FDDS consists primarily of a clock divider, a 
long-term timing corrector, a short-term timing 
corrector, and reclocking circuitry. Supplied in an a. 
pin Dual-In-Line package to save board real estate, 
the FDDS operates on + 5 volts only and is TTL com
patible on all inputs and outputs 
Th,.. 11\/rl0')1t-'; i<" .,,,,.,j!-,h!n in h.,;i 11orc:innc• tho 

WD92.1&00, ·_;;hi;h i; i~t~~ded ioi51/," di~·k; a~d the 
WD9216-01 forS¼" and 8" disks. 

DSKDDB SEPCLK 2 7 

REFCLK 3 6 

GND 4 5 

Vee 

SEPD 

CD1 

CDO 

AEFCLK--t> 

coo__.... 
CD1 ___. 

CLOCK 
DIVIDER 

EDGE 
DSKD- DETECTION 

LOGIC 

PIN CONFIGURATION 

DATA/CLOCK 
SEPARATION 

LOGIC 

- +SV 
-GND 

PULSE 
REGENERATION 

LOGIC 

FLOPPY DISK DATA SEPARATOR BLOCK DIAGRAM 

257 

SEPCLK 

SEPD 



::e 
C co 
I\) ..... 
O') 

6 
0 

:E 
C co 
I\) ..... 
O') 

6 ... 

ELECTRICAL CHARACTERISTICS 
MAXIMUM RATINGS* 
Operating Temperature Range. . . 0"C to + 70"C 
Storage Temperature Range. . - 55"C to 125"C 
Positive Voltage on any Pin, 

with respect to ground . + 8.0V 
Negative Voltage on any Pin, 

with respect to ground. -0.3V 

• Stresses above those listed may cause permanent 
damage to the device. This is a stress rating only 
and functional operation of the device at these or at 
any other condition above those indicated in the 
operational sections of this specification is not 
implied . 

NOTE: When powering this device from laboratory or 
system power supplies, it is important that the 
Absolute Maximum Ratings not be exceeded or 
device failure can result Some power supplies 
exhibit voltage spikes or "glitches" on their outputs 
when the AC power is switched on and off. In ad
dition, voltage transients on the AC power line may 
appear on the DC output If this possibility exists it is 
suggested that a clamp circuit be used. 

OPERATING CHARACTERISTICS(TA = 0"Cto ?0"C, Vee= +5V ± 5%, unless otherwise noted) 

PARAMETER MIN. TYP. MAX. UNITS COMMENTS 

D.C. CHARACTERISTICS 
INPUT VOLTAGE LEVELS 

Low Level VIL 08 V 
High Level VIH 2.0 V 

OUTPUT VOLTAGE LEVELS 
Low Level VOL 0.4 V lot= 1..6mA 
High Level VoH 2.4 V IOH = -100µA 

INPUT CURRENT 
Leakage lIL 10 µA 0,; VIN ,;,Voo 

INPUT CAPACITANCE 
All Inputs 10 pF 

POWER SUPPLY CURRENT 
loo 50 mA 

A.C. CHARACTERISTICS 
Symbol 
fey REFCLK Frequency 0.2 4.3 MHz WD9216-00 
fey REFCLK Frequency 0.2 83 MHz WD9216-01 
tcKH REFCLK High Time 50 2500 ns 
tcKL REFCLK Low Time 50 2500 ns 
tSDON REFCLK to SEPD "ON" Delay 100 ns 
tsDOFF REFCLK to SEPD "OFF" Delay 100 ns 
tSPCK REFCLK to SEPCLK Delay 100 ns 
tDLL DSKD Active Low Time 0.1 100 µs 
toLH DSKD Active High Time 0.2 100 µS 

REFCLK 

SEPD 

DSKD 

Figure 3. AC CHARACTERISTICS 

258 



DESCRIPTION OF PIN FUNCTIONS 

PIN 
NUMBER PIN NAME SYMBOL FUNCTION 

1 Disk Data DSKD Data input signal direct from disk drive Con-
tains combined clock and data waveform 

2 Separated Clock SEPCLK Clock signal output from the FOOS derived 
from floppy disk drive serial bit stream. 

3 Reference Clock REFCU< Reference clock input 

4 Ground GND Ground 

5,6 Clock Divisor CDO,CD1 COO and CD1 control the internal clock divider 
circuit The internal clock is a submultiple of the 
REFCLK according to the following table: 

CD1 coo Divisor 
0 0 1 
0 1 2 
1 0 4 
1 1 8 

7 Separated Data SEPD SEPD is the data output of the FDDS 

8 Power Supply vcc + 5 volt power supply 

4 MHz CRYSTAL I 
OSCILLATOR 

I 

~ l 
4 

REFCLK REGENERATED DATA --- CLK 
SEPD RAW REAO 

FLOPPY DISK DATA WD179X, 176X or Equiv 

DISK DSKD FLOPPY DISK 
DRIVE WD9216-00, 01 CONTROLLER 

DERIVEO CLOCK 
SEPCLK RCLK coo CD1 

t t 
GND GND 

Figure 1. 
TYPICAL SYSTEM CONFIGURATION 

(5¼" Drive, Double Density) 

OPERATION 
A reference clock (REFCLK) of between 2 and 8 MHz 
is divided by the FOOS to provide an internal clock 
The division ratio is selected by inputs CDO and CD1. 
The reference clock and division ratio should be 
chosen per table 1 

The FDDS detects the leading edges o'f the disk data 
pulses and adjusts the phase of the internal clock to 
provide the SEPARATED CLOCK output 

259 

Separate short and long term timing correctors 
assure accurate clock separation. 

The internal clock frequency is nominally 16 times 
the SEPCLK frequency. Depending on the internal 
timing correction, the internal clock may be a 
minimum of 12 times to a maximum of 22 times the 
SEPCLK frequency. 

The reference clock (REFCLK) is divided to provide 
the internal clock according to pins CDO and CD1 

:E 
C 
~ .... 
Cl) 

6 
0 

iE 
C 
~ .... 
Cl) 

6 .... 



:E 
C 
1S .... 
0) 

6 
0 

:E 
i .... 
0) 

6 .... 

TABLE 1: 
CLOCK DIVIDER SELECTION TABLE 

DRIVE DENSITY REFCLK 
(8" or5¼ ") (DD or SD) MHz CD1 coo REMARKS 

8 DD 8 0 0 } 8 SD 8 0 1 Select either one 
8 SD 4 0 0 

5¼ DD 8 0 1 } Select either one 5¼ DD 4 0 0 

5¼ SD 8 1 0 } 5¼ SD 4 0 1 Select any one 
5¼ SD 2 0 0 

INTCLK .J7J1.J7.f1_f1_flJlJ7.JU1J1...flJ1J1IUl.Jl.Jl.JcJUl.Jl..f1.J1.f1.fl..fU-

SEPCLK 

SEPD----~ 
I 
I 

i~ 
always two Internal clock cycles 

See page 725 for ordering information, 
Figure 2, 

lnformatwn furnished by Western Digital Corporation is believed to be accurate and reliable However_ no responsil:Jllity is assumed by Western Digital 
Corporation !or its use; nor for any infringements of patents or other rights of third parties which may result from its use No license ls granted by 
implication or otherwise under any patent or paten! rights of Western Digital Corporation Western Digital Corporalion reserves the right to change 
spec1ficalions at anytime without notice 

260 P11n1ec1m lJ SA 



IIJ/18 /IE lfl!!!/I 9"' /IE ll'IIJ!I AIIIIIT ll'IIJ!I 1111 ,,.. JI "'llll"' Alli JI 
,,,,,,, I. .;JI I I. Jl'Y I_, 11,1 I U I I ,,lfi,fl &. 

CORPORATION 

TR1863/TR1865 
Universal Asynchronous Receiver/Transmitter (UART) 

FEATURES 

• SINGLE POWER SUPPLY - + 5VDC 

• D.C. TO 1 MHZ (64 KB) (STANDARD PART) 
TR1863/5 

• FULL DUPLEX OR HALF DUPLEX OPERATION 

• AUTOMATIC INTERNAL SYNCHRONIZATION 
OF DATA AND CLOCK 

• AUTOMATIC START BIT GENERATION 

• EXTERNALLY SELECTABLE 
Word Length 
Baud Rate 
Even/Odd Parity (Receiver/Verification -
Tra11~111iue1/Ge11e1cniu11J 
Parity Inhibit 
One, One and One-Half, or Two Stop Bit 
Generation (1 ½ at 5 Bit Level) 

• AUTOMATIC DATA RECEIVED/TRANSMITTED 
STATUS GENERATION 
Transmission Complete 
Buffer Register Transfer Complete 
Received Data Available 
Parity Error 
Framing Error 
Overrun Error 

• BUFFERED RECEIVER AND TRANSMITTER 
REGISTERS 

Vee TAC 
NC 2 EPE 

Vss 3 WLS1 
ARD WLS2 
RRa SBS 
AR7 6 Pl 
RR5 CAL 
RR5 TRa 
RR4 TR7 
RR3 TR5 
RR2 TR5 
RR1 TR4 

PE TR3 
FE TR2 
OE TR1 

SFD TAO 

ARC TRE 
DAR THAL 

DR THRE 
RI MR 

PIN CONNECTIONS 

RAD 

RECEIVER 
TIMING AND 
CONTROL 

Vee~ 

Vss(GND) 

• THREE·STATE OUTPUTS 
Receiver Register Outputs 
Status Flags 

• TTL COMPATIBLE 

• TR1865 HAS PULL-UP RESISTORS ON ALL 
INPUTS 

APPLICATIONS 
• PERIPHERALS 

• TERMINALS 
• MINI r.nMPI ITFRS 

• FACSIMILE TRANSMISSION 

• MODEMS 

• CONCENTRATORS 

• ASYNCHRONOUS DATA MULTIPLEXERS 

• CARD AND TAPE READERS 

• PRINTERS 

• DATASETS 

• CONTROLLERS 

• KEYBOARD ENCODERS 

• REMOTE DATA ACQUISITION SYSTEMS 

• ASYNCHRONOUS DATA CASSETTES 

TRANSMITTER 
REGISTER 

TRANSMITTER 
TIMING AND 
CONTROL 

THAL 

·TAO 

TAC 
THRE 

TRE 

TR1863/TR1865 BLOCK DIAGRAM 

321 

-I 
:::c ..... 
c:o 
a, 
c,.) 

~ 
:::c ..... 
c:o 
a, 
(11 



GENERAL DESCRIPTION 
The Universal Asynchronous Receiverrrransmitter 
(lJARl) is a general purpose, programmable or 
hardwired MOS/LSI device The UART is used to 
convert parallel data to a serial data format on the 
transmit side, and converts a serial data format to 
parallel data on the receive side 
The serial format in order of transmission and 
reception is a start bit, followed by five to eight data 
bits, a parity bit (if selected) and one, one and one
half, or two stop bits. 
Three types of error conditions are available on each 
received character. parity error, framing error (no valid 
stop bit) and overrun error 

PIN DEFINITIONS 
PIN 

NUMBER NAME SYMBOL 

1 POWER SUPPLY Vee 
2 NC NC 
3 GROUND vss 
4 RECEIVER REGISTER RRD 

DISCONNECT 

5-12 RECEIVER HOLDING RRs-
REGISTER DATA RR1 

13 PARITY ERROR PE 

14 FRAMING ERROR FE 

322 

The transmitter and receiver operate on external 16X 
clocks, where 16 clock times are equal to one bit 
time The receiver clock is also used to sample in the 
center of the serial data bits to allow for line 
distortion 
Both transmitter and receiver are double buffered 
allowing a one character time maximum between a 
data read or write. Independent handshake lines for 
receiver and transmitter are also included. All inputs 
and outputs are TTL compatible with three-state 
outputs available on the receiver, and error flags for 
bussing multiple devices 

FUNCTION 

+ 5 volts supply 
No Internal Connection 

Ground= 0V 
A high level input voltage, VIH, applied to this 
line disconnects the RECEIVER HOLDING 
REGISTER outputs from the RR1-8 data outputs 
(pins 5-12) 
The parallel contents of the RECEIVER 
HOLDING REGISTER appear on these lines if a 
low-level input voltage, VIL, is applied to RRD 
For character formats of fewer than eight bits 
received characters are right-justified with RR1 
(pin 12) as the least significant bit and the 
truncated bits are forced to a low level output 
voltage, VOL-
A high level output voltage, VoH, on this line 
indicates that the received parity differ from 
that which is programmed by the EVEN PARITY 
ENABLE control line (pin 39). This output is 
updated each time a character is transferred 
to the RECEIVER HOLDING REGISTER PE 
lines from a number of arrays can be bussed 
together since an output disconnect capability 
is provided by Status Flag Disconnect line 
(pin 16). 
A high-level output voltage, VoH, on this line 
indicates that the received character has no 
valid stop bit, i e, the bit (if programmed) is not 
a high level voltage. This output is updated each 
time a character is transferred to the Receiver 
Holding Register, FE lines from a number of 
arrays can be bussed together since an output 
disconnect capability is provided by the Status 
Flag Disconnect line (pin 16). 



PIN DEFINITIONS 

PIN 
NUMBER NAME SYMBOL 

15 OVERRUN ERROR OE 

16 

17 

19 

20 

21 

22 

23 

24 

STATUS FLAGS SFD 
DISCONNECT 

RECEIVER REGISTER ARC 
CLOCK 
r"\ ~'"T"~ r,,-r,,!'""!> lr'"'I'"", 
Ul"'\lf"\ I IL.\JI...IVL.U unn 
RESET 
DATA RECEIVED DR 

RECEIVER INPUT RI 

MASTER RESET MR 

TRANSMITTER THRE 
HOLDING REGISTER 
EMPTY 

TRANSMITTER THAL 
HOLDING REGISTER 
LOAD 

TRANSMITTER TRE 
REGISTER EMPTY 

323 

FUNCTION 

A high-level output voltage, VoH, on this line 
indicates that the Data Received Flag (pin 19) 
was not reset before the next character was 
transferred to the Receiver Holding Register. 
OE lines from a number al arrays can be bussed 
together since an output disconnect capability 
is provided by the Status Flag Disconnect line 
(pin 16) 

A high-level input voltage, VtH, applied to this 
pin disconnects the PE, FE, OE, DR and THRE 
allowing them to be buss connected. 
The receiver clock frequency is sixteen (16) 
times the desired receiver shift rate 
A luw-it::vd iuµul vuHctyt:::1 V1L, dµµlit:::U iu ii1i~ 
line resets the DR line 
A high-level output voltage, VoH, indicates that 
an entire character has been received and 
transferred to the RECEIVER HOLDING 
REGISTER 
Serial input data A high-level input voltage, VIH, 
must be present when data is not being 
received 

This line is strobed to a high-level input voltage, 
VIH, to clear the logic. It resets the TRANS· 
MITTER and RECEIVER HOLDING REGIS
TERS, the TRANSMITTER REGISTER, FE, OE, 
PE, DR and sets TRO, THRE, and TRE to a 
high-level output voltage, VoH-
A high-level output voltage, VOH, on this line 
indicates the TRANSMITTER HOLDING REGIS
TER has transferred its contents to the 
TRANSMITTER REGISTER and may be loaded 
with a new character 

A low-level input voltage, V1L. applied to this 
line enters a character into the TRANSMITTER 
HOLDING REGISTER. A transition from a low
level input voltage, VIL. to a high-level input 
voltage, VIH, transfers the character into the 
TRANSMITTER REGISTER if ii is not in the 
process of transmitting a character If a 
character is being transmitted, the transfer is 
delayed until its transmission is completed 
Upon completion, the new character is 
automatically transferred simultaneously with 
the initiation of the serial transmission of the 
new character 
A high-level output voltage, VOH, on this line 
indicates that the TRANSMITTER REGISTER 
has completed serial transmission of a full 
character including STOP bit(s), It remains at 
this level until the start al transmission of the 
next character 



-I 
::0 ... 
00 
a, 

~ 
::0 ... 
~ 
CJ1 

PIN DEFINITIONS 

PIN 
NUMBER 

25 

26-33 

34 

35 

36 

37-38 

39 

40 

NAME 

TRANSMITTER 
REGISTER OUTPUT 

SYMBOL 

TRO 

TRANSMITTER TR1-TRB 
REGISTER DATA 
INPUTS 

CONTROL REGISTER CRL 
LOAD 

PARITY INHIBIT Pl 

STOP BIT(S) SELECT SBS 

WORD LENGTH WLS2-WLS1 
SELECT 

EVEN PARITY EPE 
ENABLE 

TRANSMITTER TRC 
REGISTER 

324 

FUNCTION 

The contents of the TRANSMITTER REGISTER 
(START bit, DATA bits, PARITY bit, and STOP 
bits) are serially shifted out on this line. When 
no data is being transmitted, this line will 
remain at a high-level output voltage, VOH· Start 
of transmission is defined as the transition of 
the START bit from a high-level output voltage 
VoH, to a low-level output voltage VOL· 
The character to be transmitted is loaded into 
the TRANSMITTER HOLDING REGISTER on 
these lines with the THRL Strobe. If a character 
of less than 8 bits has been selected (by WLS1 
and WLS2), the character is right justified to the 
least significant bit, TR1, and the excess bits 
are disregarded. A high-level input voltage, VIH, 
will cause a high-level output voltage, VoH, to 
be transmitted 
A high-level input voltage, VIH, on this line 
loads the CONTROL REGISTER with the 
control bits (WLS1, WLS2, EPE, Pl, SBS). This 
line may be strobed or hard wired to a high-level 
input voltage, VIH 
A high-level input voltage, VIH, on this line 
inhibits the parity generation and verification 
circuits and will clamp the PE output (pin 13) to 
VOL If parity is inhibited, the STOP bit(s) will 
immediately follow the last data bit of trans
mission 
This line selects the number of STOP bits to be 
transmitted after the parity bit A high-level 
input voltage VIH, on this line selects two STOP 
bits, and a low-level input voltage, VIL, selects a 
single STOP bit The TR1863 and TR1865 
generate 1 ½ stop bits when word length is 5 
bits and SBS is High VIH 
These two lines select the character length 
(exclusive of parity) as follows: 

WLS2 WLS1 Word Length 

~ ~ 5bits 
VIL VIH 6 bits 
VIH VIL 7 bits 
VIH VIH 8 bits 

This line determines whether even or odd 
PARITY is to be generated by the transmitter 
and checked by the receiver. A high-level input 
voltage, VIH, selects even PARITY and a low
level input voltage, VIL, selects odd PARITY 
The transmitter clock frequency is sixteen (16) 
times the desired transmitter shift rate 



CASEI 

CASEII 

THRL '7._J 

THRE ----

LJ 

15CLOCK TIMES -,,.I f.,._ V, CLOCK 

TRE AFTER START OF I 

._ _________ L_A_s_T_sT_o_P_s_1_T_1_1)_:f7__. .. --'-i _______ _ 

TRO 

CR1 CR2 
I 

CF1 

-,.j I--- 'nCLOCK 

,7.,._ END OF LAST STOP 

'---------------1 V BIT (COUNT 16) 

(1) NOT VALID FOR 5 0 MHZ OPTION 

CR3 CR4 CRS 
I I 

CF2 CF3 CF4 CFS 

TRC ,___ ~ --- ~-- ~ 

'---

THAL '---n '-
THRE 

TRE 

TRO 

THRL 

THRE 

TRE 

TRO 

- '--- '- '---
I.----

}A 
( 

k 

I D) 

!---.-

\ 
I\ 

B 
__,, 

I"\ 

\ C 

~ 

1.~ 

~ ktU 
I 

1...-

,___ ----
DETAIL I 

TRANSMITTER TIMING 

325 

CASE I 1F THE POSITIVE TRANSITION OF 
THAL OCCURS >250ns PA10R TO ANY 
CLOCK FALLING EDGE (CF3 IN 
SAMPLE) THE A, B. C, AND D SIGNALS 
WILL BE GENERATE0 AS SHOWN IN 
DETAIL II 

CASE II IF THE POSITIVE TRANSITION OF 
THAL OCCURS (250ns PRIOR TO ANY 
CLOCK FALLING EDGE (CF3 IN 
SAMPLE) THE B C, AND D SIGNALS 
MAY BE GENERATED ON THE FOL 
LOWING CLOCK TIME IE. THE 8 C. 
ANO D SIGNALS AS SHOWN IN 
DETAIL MAY CHANGE AS FOLLOWS 

CF3TOCF4 
CF4 TOCF5 
CR4 TO CRS 

NOTE· IT IS ADVISABLE TO CONSIDER 
CASE II FOR lcLOCK ><IO MHZ 



STAAT(1) STOP START STOP 

I 
-A-I----.,,,----D-AT_A ___ --r-

I I DATA 

AA1-RR8 AND ERROR FLAGS PE, FE, OE(5) x 

DA(19) IL 
DAA(18) 

121U lJ 
DETAIL: 

NOMINAL 

Al STOP BIT 

--I. TRANSITION NOMINAL BIT CENTER 

IP' 
-ti-----------------'.,,...;1 _________ _ 

PE, FE(3) 
-(1-----------.:....J\.-______ _ 

I -/t 151 I ~I ________ _ 

RR1 ARB, OE(3) ~ : 

--/1-/ ---------------'·'-'· ---------

--1-t --------1~~1-_I ___ _ tr I 

121-, Id G-----
LA-..: (4) 

DAR 

-u 
DR(3) 

(1) SEE APPLICATION FLAGS REPORT NO 1 FOR DESCRIP 
TION OF START BIT DETECTION 

(2) THE DELAY BETWEEN ORR AND DA = Id = 500 NS 
(3) DR ERROR FLAGS, AND DATA ARE VALID AT THE 

NOMINAL CENTER OF THE FIRST STOP BIT 
(4) DAR SHOULD BE HIGH A MINIMUM OF A" NS (ONE• 

HALF CLOCK TIME PLUS lpd) PRIOR TO THE RISING 
EDGE OF DR 

(5) DATA AND OE PRECEDES DR, PE, AND FE FLAGS BY 
'I, CLOCK 

(6) DATA FLAGS WILL REMAIN SET UNTIL A GOOD CHA RAC 
TEA IS RECEIVED OR MASTER RESET IS APPLIED 

RECEIVER TIMING 

326 



TR8-TR1 

20V 

, OBV 

I'--------, ..._ - - -

DATA INPUT LOAD CYCLE 

SFD 

~ 
lpd1-t 

' PE, F~;, ;:;:H-;E- -,,,_ '- 2 OV 

'--k_:B.':_ __ 

lpdO.j 

•OUTPUTS PE, FE, OE, DR, THRE ARE DIS• 
CONNECTED AT TRANSITION OF SFD 
FROM O av T02 ov 

STATUS FLAG OUTPUT DELAYS 

lhold 

327 

WLS1, WLS2, SBS, P1, EPE - ;-------, 
,/'-------➔ 

tset 

CONTROL REGISTER LOAD CYCLE 

ARD -----
~-

..._'.pd1+f-__ _ 

' 

•RR1·RR3, ARE DISCONNECTED AT 
TRANSITION OF ARD FROM O BV TO 2 OV 

DATA OUTPUT DELAYS 



TURN ON POWER A 
PULSE MASTER RESET 

3 SELECT BAUD RATE (16XCLK) 

THAE = VoH 
TAE = VoH 
TRO = VoH 

SHIFT ONE BIT RIGHT 
IN TRANSMITTER REGISTER 

TRANSMIT START, DATA BITS 
SELECTED PARITY MODE 

AND STOP BITiSI 

TRANSMITTER FLOW CHART 

328 

NO 



> 
EXAMINE OUTPUTS 

OPERATOR 1 STAOBESFO 
ACTION L..::2._:S_:TR_:O:_:B:.:E_:RR_:O~-

RESET DR 

DAR VQL 
DA-Vol 

RECEIVER FLOW CHART 

329 



ABSOLUTE MAXIMUM RATINGS 

NOTE: These voltages are measured with respect to GND 

Storage Temperature 
Plastic 
Ceramic 

Vee Supply Voltage 
Input Voltage at any pin 
Operating Free-Air Temperature 

TA Range 

-55'C to + 125'C 
-65'Cto +150'C 

-03Vto + 70V 
-0.3Vto +70V 

Lead Temperature (Soldering, 10 sec) 
0'C to 70"C 

300'C 

ELECTRICAL CHARACTERISTICS 
(Vee = 5V ± 5%, Vss = oV) 

SYMBOL PARAMETER TR1863/5 
OPERATING CURRENT MIN MAX 

ice Supply Current 35ma 
LOGIC LEVELS 

VIH Logic High 24V 
VIL Logic Low 0.6V 

OUTPUT LOGIC LEVELS 
VoH Logic High 24V 
VOL Logic Low OAV 
ioc Output Leakage ± 10µa 

(High Impedance State) 
IIL Low Level Input Current 100µa 1.6ma 

10µa 
IIH High Level Input Current -10µa 

330 

CONDITIONS 
Vee= s2sv 

vcc = 4 ?sv 

Vee= 4.75V,loH = 100µa 
Vee= s.2sv, loL = 1.6ma 
vouT = ov, vouT = sv 
SFD = RRD = V1H 
VIN = OAV TR 1865 only 
VIN = VIL. TR 1863 only 
VIN = VIH, TR 1863 only 



SWITCHING CHARACTERISTICS 
(See "Switching Waveforms") 

SYMBOL PARAMETER 

fclock Clock Frequency 

TR1863-00 

TR1863-02 

TR1863-04 

TR1863-06 

TR1865-00 

TR1865-02 

TR1865-04 

TR1865-06 

tpw Pulse Widths 

CHL 

THRL 

DRR 

MR 

le Coincidence Time 

thold Hold Time 

tset Set Time 

OUTPUT PROPAGATION 

DELAYS 

tpdO To Low State 

tpd1 To High State 

CAPACITANCE 

Cin Inputs 

Co Outputs 

MIN 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

20011~ 

200ns 

200ns 

500 ns 

200 ns 

20 ns 

0 

MAX CONDITIONS 

vcc = 4 75V 

10MHz 

2.5 MHz 

3.5 MHz 

5.0MHz 

1.0MHz with internal pull-ups on all inputs 

2.5MHz with internal pull-ups on all inputs 

35MHz with internal pull-ups on all inputs 

50MHz with internal pull-ups on all inputs 

250 ns 

250ns CL = 20 pf, plus one TTL load 

20pf f = 1 MHz, VIN = 5V 
20pf f = 1 MHz, VIN 5V 

See page 725 for ordering information 

331 

--1 
::D ..... 
0) 
en 
c..> 
::j 
::D ..... 
0) 
en 
(11 



-I 
::D ..... 
00 
O'> 
(,) 

~ 
::D ..... 
00 
O'> 
(11 

lntormat1on furnished by Western Digital Co1porat1on 1s belwved to be accurate and reliable However no respons1b1l1ty 1s assumed byWeslern D1g1ta1 
Corpora\1011 tor its use, nor for any infringements ot palents or other rights of third parties which may resul1 from its use No license 1s granted by 
1mpl1ca!1on or otherwise under any patent or pa\enl rights ot Western D1g1ta! Corporation Western D1g1tal Corporation reserves the right to change 

spec11lcal1ons a1 anytime withollt notice 

332 Pnnted ,n USA 





Subject 

Address decoding 
4 
4 Gate Array 
4P .. 
4P Gate Array . 

Baud 
4 .... 
4 Gate Array 
4P 
4P Gate Array .. 

Baud rate generator 
4 ..... 
4 Gate Array 
4P 
4P Gate Array 

Buffering 
4 Gate Array 

Index 
Page Subject Page 

3 
.. 26 

. 60 
105 

15 
51 
98 

.. 142 

15 
. 51 

. 57, 98 

... 142 

.. 48 

CRT 
4 7, 9 
4 Gate Array 21, 28, 36 
~ .......... ~.w.~ 
4P Gate Array .. 103, 105, 130 

Decoding, address 
4 
4 Gate Array 
4P 
4P Gate Array 

Disk Drive 
4 Gate Array 
4P 
4P Gate Array . 

Drive select 
4 

3 
28 
60 

105 

.... 48 

.... 93 
142 

4P ......... .. ............. 95 
4 Gate Array 
4P 

17 
.. 47, 48 

.... 93, 95 
142 4P Gate Array 

CASIN* 
4 .. 
4 Gate Array 

CASOUT* 
4 
4 Gate Array 

Cassette circuitry 
4 
4 Gate Array 

Clock 
4 ...... 
4 Gate Array .......... . 
4P .. 
4P Gate Array 

Compensated write data 
4 ......... 
4 Gate Array ... 
4P 
4P Gate Array . 

Controller, CRT 
4 
4 Gate Array 
4P 
4P Gate Array . 

Controller, Floppy Disk 
4 Gate Array .. 
4P .. 
4P Gate Array 

CPU Board 
4 
4 Gate Array 
4P 
4P Gate Array .. 

140 

3, 17 
.. 54 

..... 3, 16 
...... 54 

9 
.... 46 

3 
. 21 

57 
103 

17 
47 
96 

141 

7 
. 21, 28, 36 

57, 60, 85 
103, 105, 130 

.. 48 
93 

138 

3 
... 21 

....... 57 
103 

4P Gate Array . 
DRVSEL* 

4 
4 Gate Array 
4P 
4P Gate Array . 

FDC Controller 
4 Gate Array 
4P 
4P Gate Array . 

1/0 bus 
4 
4 Gate Array 
4P ... 
4P Gate Array . 

Interrupts 
4 Gate Array .. 
4P 
4P Gate Array . 

Keyboard 
4 .... 
4 Gate Array 
4P .. 
4P Gate Array . 

Memory address decoding 
4 
4 Gate Array 
4P 
4P Gate Array . 

MODOUT 
4 
4P 
4P Gate Array . 

17 
47 
95 

140 

47,48 
93 

138 

14 
. 44 

91 
136 

.. .. 48 
... 95 

140 

7 
...... 41 

... 87 
132 

6 
... 27 
... 60 

105 

... 16 
. 82 
127 



Subject 

NMI logic 
4 Gate Array 
4P 
4P Gate Array .. 

Oscillator 
4 

PAL Circuits 
4 

Port Address decoding 
4 
4P 
4P Gate Array . 

Port ~it map 

4 Gate Array 
4P 
4P Gate Array . 

Precompensation, write 
4 Gate Array 
4P .... 
4P Gate Array 

Printer status 
4 ........ . 
4 Gate Array 
4P ..... 
4P Gate Array 

RAM 
4 
4 Gate Array ... 
4P .... 
4P Gate Array . . ......... . 

RDINSTATUS* 
4 
4 Gate Array 
4P 
4P Gate Array . 

RDNMISTATUS* 
4 
4 Gate Array 
4P 
4P Gate Array .. 

Real Time Clock 
4 ........ . 
4 Gate Array ..... 
4P ... 
4P Gate Array 

ROM 
4 
4 Gate Array 
4P 
4P Gate Array ... 

Page Subject 

48 
95 

. 140 

. 3, 5 

15 

15 
81 

126 

C, -it:' 
, ••Vi IU 

. 37 

. 81 
126 

.. 47 
. 96 
141 

9 
.. 41 
. . 87 
. 132 

.. 7, 8 
. . 36, 39 

71-84 
. . 116-129 

16 
.... 48 

. 83 
128 

... 16 
. 48 

.... 83 
.... 128 

9 
. . 41 

87 
132 

7 
. 36 

.. 60 
. . 105 

RS-232 Board 
4 Gate Array 
4P 
4P Gate Array .. 

Sound 
4 ...... . 
4 Gate Array 
4P 
4P Gate Array .. 

Timing, CPU 
4 .. 
4 Gate Array 
4P 
"n r-- .... ,,,.., ,,..,..,,..,,, 
"Tl UC.UV ru I uy 

Video Controller 
4 .. 
4 Gate Array 
4P ..... . 
4P Gate Array 

Video Monitor 
4 .... 
4 Gate Array 
4P ..... 
4P Gate Array . 

Wait State 
4 Gate Array 
4P 
4P Gate Array . 

WRINTMASKREG* 
4 
4 Gate Array .. 
4P 
4P Gate Array 

Write Precompensation 
4 Gate Array 
4P 
4P Gate Array .. 

WRNMIMASKREG* 
4 
4 Gate Array 
4P . . . 
4P Gate Array . 

Page 

51 
98 

. . 142 

10 
44 
91 

. . 136 

3 
21 
57 

... 108 

7 
21,28,36 
57, 60, 85 

. 103, 105, 130 

7, 9 
21, 28, 36 
57, 60, 85 

... 103, 105, 130 

47 
95 

. 140 

16 
48 
83 

. 128 

. 47 
96 

141 

.... 16 
48 
83 

128 



SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
SOFTWARE 
~Ol=TWARF 



Part 2 / Software 

1 / Disk Organization 

2/ Disk Files 

Single Density Floppy Diskette 
Double Density Floppy Diskette 
5" 5-Meg Hard Disk. 

Disk Space Available to the User 
Unit of Allocation 

Methods of File Allocation 
Dynamic Allocation. 
Pre-Allocation. 

Record Length 
Record Processing Capabilities 

Record Numbers 

3/ TRSDOS File Descriptions 
System Files (/SYS). 
Utility Programs 
Device Driver Programs 
Filter Programs 
Creating a Minimum Configuration Disk 

4/ Device Access 

5/ Drive Access. 

6/ File Control . 

Device Control Block IDCB) . 
Memory Header 

Drive Code Table (DCT) 

Disk 1/0 Table 
Directory Records 
Granule Allocation Table (GAT) 
Hash Index Table (HIT) 

File Control Block (FCB) 

7 I TRSDOS Version 6 Programming Guidelines 
Converting to TRSDOS Version 6 
Programming With Restart Vectors 
l<FLAG$ (BREAK)( (PAUSE), and (ENTER) Interfacing 
Interfacing to @\CNFG 
Interfacing to @I< ITSI< 
Interfacing to the Task Processor . 
Interfacing RAM Banks 1 and 2 . 

Device Driver and FIiter Templates 
@CTL Interfacing to Device Drivers 

3 
3 
3 
3 

3 
4 
4 

9 
9 

10 

.11 

11 
. 13 

13 
.. 16 

18 

23 
. 23 

...... 27 
.. 27 
.. 29 

29 
32 

. 33 
34 
36 
40 
42 



8/ Using the Supervisor Calls 
Calling Procedure 
Program Entry and Return Conditions. 
Supervisor Calls. 
Numerical List of SVCs 
Alphabetical List of SVCs. 

Sample Programs. 

9/ Technical Information on TRSDOS Commands and Utilities 

Appendix A/ 
Appendix B/ 
Appendix C/ 
Appendix D/ 

Appendix E/ 
Appendix F/ 

Index 

TRSDOS Error Messages 
Memory Map 
Character Codes 
Keyboard Code Map 

Programmable SVCs 
Using SYS 13/SYS 

45 
45 
45 
46 
49 
52 
54 

189 

193 
199 
201 
211 
213 
215 

217 



1 /Disk Organization 

TRSDOS Version 6 can be used with 5¼" single-sided floppy diskettes and 
with hard disk. Floppy diskettes can be either single-or double-density See the 
charts below for the number of sectors per track, number of cylinders, and so 
on for each type of disk. (Sectors and cylinders are numbered starting with 0.) 

Single-Density Floppy Diskette 

Bytes 
per 

Sector 

256 

256 

Sectors 
per 

Granule 

5 

5 

Sectors 
per 

Track• 

(10) 

(10) 

Double-Density Floppy Diskette 

Bytes Sectors Sectors 
per per per 

Sector Granule Track• 

256 
6 

(18) 

256 6 (18) 

Granules 
per 

Track 

2 

2 

Granules 
per 

Track 

3 

3 

Tracks Cylinders 
per per Total 

Cylinder Drive Bytes 

256 
1,280 
2,560 
2,560 

40 102,400 
40 102,400 

(100K) .. 

Tracks Cylinders 
per per Total 

Cylinder Drive Bytes 

256 
1,536 
4,608 
4,608 

40 184,320 
40 184,320 

(180K)" 

•The number of sectors per track is not included in the calculation because it 
is equal to the number of sectors per granule times the number of granules 
per track. (5 x 2 = 10 for single density, 6 x 3 = 18 for double density, and 
16 x2=32 for hard disk.) 

.. Note that this figure is the total amount of space in the given format. Keep in 
mind that an entire cylinder is used for the directory and at least one granule 
is used for the bootstrap code. This leaves 96.25K available for use on a 
single-density data disk and 174K on a double-density data disk, 

Software 1 



5" 5-Meg Hard Disk 

Note: Because of continual advancements in hard disk technology, the number 
of tracks and the number of tracks per cylinder may change. Theriore, any infor
mation that comes with your hard disk drive(s) supersedes the information in 
the table below 

Bytes Sectors Sectors Granules Tracks Cylinders 
per per per per per per Total 

Sector Granule Track• Track Cylinder Drive Bytes 

256 256 
16 4,096 

(32) 2 8,192 
4 32,768 

153 5,013,504 
256 16 (32) 2 4 153 5,013,504 

(4,896K) 

•The number of sectors per track is not included in the calculation because it is 
equal to the number of sectors per granule times the number of granules per 
track. (5 x 2 = 10 for single density, 6 x 3 = 18 for double density, and 
16 x 2 = 32 for h;mi disk) 

Disk Space Available to the User 

Unit of Allocation 

One granule on cylinder 0 of each disk is reserved for the system. It contains 
information about where the directory is located on that disk. If the disk contains 
an operating system, then all of cylinder 0 is reserved. This area contains infor
mation used to load TRSDOS when you press the reset button. 

One complete cylinder is reserved for the directory, the granule allocation table 
(GAT), and the hash index table (HIT). (On single-sided diskettes, one cylinder 
is the same as one track.) The number of this cylinder varies, depending on the 
size and type of disk. Also, ii any portion of the cylinder normally used for the 
directory is flawed, TRSDOS uses another cylinder for the directory. You can 
find out where the FORMAT utility has placed the directory by using the 
Free :drive command. 

On hard disks, an additional cylinder ( cylinder 1) is reserved for use in case 
your disk drive requires service. This provides an area for the technician to write 
on the disk without harming any data. (If you bring your hard disk in for service, 
you should try to back up the contents of the disk first, just to be safe.) 

The smallest unit of disk space that the system can allocate to a file is a gran· 
ule. A granule is made up of a set of sectors that are adjacent to one another 
on the disk. The number of sectors in a granule depends on the type and size 
of the disk. See the charts on the previous two pages for some typical sizes. 

Software 2 



2/Disk Files 

Methods of File Allocation 

Record length 

TRSDOS provides two ways to allocate disk space for files: dynamic allocation 
and pre-allocation 

Dynamic Allocation 
With dynamic allocation, TRSDOS allocates granules only at the time of write. 
For example,'when a file is first opened for output, no space is allocated. The 
first allocation of space is done at the first write. Additional space is added as 
required by further writes. 

With dynamically allocated files, unused granules are de-allocated {recovered) 
when the file is closed 

Unless you execute the CREATE system command, TRSDOS uses dynamic 
allocation. 

Pre-Allocation 
With pre-allocation, the file is allocated a specified number of granules when it 
is created .. Pre-allocated files can be created only by the system command 
CREATE. {See the Disk System Owner's Manual for more information on 
CREATE.) 

TRSDOS automatically extends a pre-allocated file as needed However, it 
does not de-allocate unused granules when a pre-allocated file is closed. To 
reduce the size of a pre-allocated file, you must copy it to a dynamically allo
cated file. The COPY {CLONE= N) system command does this automatically. 

Files that have been pre-allocated have a 'C' by their names in a directory 
listing. 

TRSDOS transfers data to and from disks one sector at a time. These sectors 
are 256-byte blocks, and are also called the system's "physical" records. 

You deal with records that are 256 bytes in length or smaller, depending on 
what size record you want to work with. These are known as "logical" records 

You set the size of the logical records in a file when you open the file for the first 
time. The size is the number of bytes to be kept in each record .. There may be 
from 1 to 256 bytes per logical record. 

The operating system automatically accumulates your logical records and 
stores them in physical records .. Since physical records are always 256 bytes in 
length, there may be one or more logical records stored in each physical record. 
When the records are read back from disk, the system automatically returns 
one logical record at a time. These actions are known as "blocking" and "de
blocking;· or "spanning'.' 

For example, if the logical record length is 200, sectors 1 and 2 look like this: 

Software3 



sE.CiORONE 

513 
200 o'l',es bytes 

Since they are completely handled by the operating system, you do not need to 
concern yourself with physical records, sectors, granules, tracks, and so on. 
This is to your benefit, as the number of sectors per granule varies from disk to 
disk .. Also, physical record lengths may change in future versions of TRSDOS, 
but the concept of logical records will not 

Note: All files are fixed-length record files with TRSDOS Version 6 

Record Processing Capabilities 

TRSDOS allows both direct and sequential file access 

Direct access (sometimes called "random access") lets you process records in 
any sequence you specify. 

Sequential access allows you to process records in sequence: record n, n + 1, 
n + 2, and so on. With sequential access, you do not specify a record number 
Instead, TRSDOS accesses the record that follows the last record processed, 
starting with record 0. 

With sequential access files, use the @READ supervisor call to read the next 
record, and the @WRITE or @VER supervisor call to write the next record. 
(When the file is first opened, processing starts at record 0. You can use 
@PEOF to position to the end of file) 

To read or .write to a direct access file, use the @POSN supervisor call to posi
tion to a specified record. Then use @READ, @WRITE, or @VER as desired. 
Once @POSN has been used, the End of File (EOF) marker will not move, 
unless the file is extended by writing past the current EOF position 

Record Numbers 
Using direct (random) access, you can access up to 65,536 records. Record 
numbers start at 0 and go to 65535. 

Using a file sequentially, you can access up to 16,777,216 bytes. To calculate 
the number of records you can access sequentially, use the formula: 

16,777,216 logical record length= number of sequential 
records allowed 

Below are some examples. 

If the LRL=256, then: 
16,777,216 + 256=65,536records 

If the LRL = 128, then: 
16,777,216 128=131,072 records 

If the LRL = 50, then: 
16,777,216 + 50=335,544 records 

If the LRL = 1, then: 
16,777,216 + 1=16,777,216records 

Software4 



3/TRSDOS File Descriptions 

This section describes four types of files found on your TRSDOS master disk
ette (system files, utilities, driver programs, and filter programs) and explains 
their functions, It also describes how to construct a minimum system disk for 
running applications packages. 

System Files (/SYS) 

TRSDOS Version 6 would occupy considerable memory space if all of it were 
resident in memory at any one time. To minimize the amount of memory 
reserved for system use, TRSDOS uses overlays. 

Using an overlay-driven system involves some compromise. While a user's 
application is in progress, different overlays may need to be loaded to perform 
certain activities requested of the system This could cause the system to run 
slightly slower than a system which has more of its file access routines always 
resident in memory 

The use of overlays also requires that a SYSTEM disk usually be available in 
Drive 0 (the system drive) .. Since the disk containing the operating system and 
its utilities leaves little space available to the user, you may want to remove cer
tain parts of the system software not needed while a particular application is 
running. You may in fact discover that your day-to-day operations need only a 
minimal TRSDOS configuration. The greater the number of system functions 
unnecessary for your application, the more space you can have available for a 
"working" system disk. Use the PURGE or REMOVE library command to elim
inate unneeded system files from the disk 

The following paragraphs describe the functions performed by each system 
overlay. (In the display produced by the DIR (SYS) library command, the system 
overlays are identified by the file extension /SYS) 

Note: Two system files are put on the disk during formatting. They are DIR/SYS 
and BOOT/SYS. These files should never be copied from one disk to another 
or REMOVEd. TRSDOS automatically updates any information necessary 
when performing a backup. 

SYS0/SYS 

This is not an overlay It contains the resident part of the operating system 
(SYSRES). It is also needed to dynamically allocate file space used when writ
ing files. Any disk used for booting the system must contain SYS© It can be 
purged from disks not used for booting 

SYS1/SYS 

This overlay contains the TRSDOS command interpreter and the routines for 
processing the @CMNDI, @CMNDR, @FEXT, @FSPEC, and @PARAM sys
tem vectors. This overlay must be available on all SYSTEM disks. 

SYS2/SYS 

This overlay is used for opening or initializing disk files and logical devices It 
also contains routines for processing the @CKDRV, @GTDCB, and @RENAM 
system vectors, and routines for hashing file specifications and passwords 
This overlay must be available on all SYSTEM disks. 

SYS3/SYS 

This overlay contains all of the system routines needed to close files and logical 
devices. It also contains the routines needed to service the @FNAME system 
vector. This overlay must not be removed from the disk 

Software 5 



SYS4/SYS 

This overlay contains the system error dictionary, It is needed to issue such 
rnessages as "File not found;' "Directory read eiior;· etc. If you decide to 
remove this overlay from your working SYSTEM disk, all system errors will pro
duce the error message "SYS ERROR'.' It is recommended that you not remove 
this overlay, especially since it occupies only one granule of space. 

SYS5/SYS 

This is the "ghost" debugger. It is needed if you intend to test out machine lan
guage application software by using the TRSDOS DEBUG library command. If 
your operation will not require this debugging tool, you may purge this overlay. 

SYS6/SYS 

This overlay contains all of the routines necessary to service the library com
mands identified as "Library P.:: by the LIB command. This represents the pri
mary library functions .. Only very limited use can be made of TRSDOS if this 
overlay is removed from your working SYSTEM disk. 

SYS7/SYS 

This overlay contains all of the routines necessary to service the library com
mands identified as "Library B" by the LIB command. A great deal of use can 
ho m~rlo nf TAQ:nnq; o\1on v_1!thrn ,t thi~ nH'7'rl:::1\1 It rn::arfnrrn~ ~nP~iAli7Prl f1 mc-

ti~r;~ lh;t ~ay ~~! be-n~~d~d i~ th~ op~ration of specific applications You can 
purge this overlay if you decide it is not needed on a working SYSTEM disk 

SYSB/SYS 

This overlay contains all of the routines necessary to service the library com
mands identified as "Library C" by the LIB command A great deal of use can 
be made of TRSDOS even without this overlay. It performs specialized func
tions that may not be needed in the operation of specific applications. You can 
purge this overlay if you decide it is not needed on a working SYSTEM disk 

SYS9/SYS 

This overlay contains the routines necessary to service the extended DEBUG 
commands available after a DEBUG (EXT) is performed. This overlay may be 
purged if you will not need the extended DEBUG commands while running your 
application. If you remove SYS5/SYS, then you may as well remove SYS9/SYS, 
as it would serve no useful purpose. 

SYS10/SYS 

This system overlay contains the procedures necessary to service the request 
to remove a file. It should remain on your working SYSTEM disks 

SYS11/SYS 

This overlay contains all of the procedures necessary to perform the Job Con
trol Language execution phase, You may remove this overlay from your working 
disks if you do not intend to execute any JCL functions. If SYS6/SYS (which 
contains the DO command} has been removed, keeping this overlay would 
serve no purpose 

SYS12/SYS 

This system overlay contains the routines that service the @DODIR, 
@GTMOD, and @RAMDIR system vectors. It should remain on your disks 

SYS13/SYS 

This overlay is reserved for future system use It contains no code and takes up 
no space on the disk. You may remove this overlay if you wish to free up its 
directory slot 

Software6 



Utility Programs 

In TRSDOS Version 6 2, this overlay contains the message "No EC! is present 
at SYS13" if you have not implemented an Extended Command Interpreter 
(ECI) or an Immediate Execution Program (IEP) You may purge this overlay if 
you do not intend to use an EC! or an IEP See Appendix F, Using SYS13, for 
more information 

BACKUP 

COMM 

CONV 

DOS/HLP 

FORMAT 

HELP/CMD 

LOG 

PATCH 

REPAIR 

TAPE100 

- Used to duplicate data from one disk to another. 

- A communications package for use with the RS-232C 
hardware 

- Used to copy files from Model Ill TRSDOS to TRSDOS Version 
6 

- (Version 6 2 only) The data file used with the HELP utility 

- Used to put track, sector, and directory information on a disk 

(Version 6.2 only) Used to provide on-line information about 
the TRSDOS commands 

- Used to log in a double-sided diskette in Drive 0. Also updates 
the Drive Code Table information as with the DEVICE library 
command 

- Used to make changes to existing files 

- Used to correct certain information on non-TRSDOS format-
ted diskettes 

-A disk/tape, tape/disk utility for cassette tape operations with 
the TRS-80 Model 100 

Device Driver Programs 
COM/DVR - The RS-232C communications driver. 

Filter Programs 

FLOPPY/OCT - Configures floppy drives in the system. Not needed with a 
floppy-only system 

JUDVR - The Joblog driver program. 

MEMDISK/DCT - Used to establish a pseudo floppy drive in memory. 

CLICK/FLT - Produces a short tone as each key is pressed. 

FORMS/FLT Used to select printer parameters and perform character 
translation. 

KSM/FLT - The Keystroke Multiply feature, which allows the assigning 
of user-determined phrases to alphabetic keys. 

Creating a Minimum Configuration Disk 
All files except certain /SYS files may be purged from your Drive 0 disk. Addi
tionally, if you place the needed /SYS files in high memory with the SYSTEM 
(SYSRES) command, ii will be possible to run with a minimum configuration 
disk in Drive 0 after booting the system. Keep the following points in mind when 
purging system files: 

• For operation, SYS files 1, 2, 3, 4, 10, and 12 should remain on the Drive 
0 disk or be resident in memory. 

Software 7 



• SYS2 must be on the system disk if a configuration file is to be loaded 

• SYS11 must be present only if any JCL files will be used 

• All three libraries (SYS files 6, 7, and 8) may be purged if no library com· 
mand will be used. 

• SYS5 and SYS9 may be purged if the system DEBUG package is not 
needed. 

• SYS© may be removed from any disk not used for booting. 

• SYS11 (the JCL processor) and SYS6 (containing the DO library com
mand) must both be on the disk if the DO command is to be used. Also, 
if you remove SYS6, you may as well remove SYS11. 

• SYS13 may be removed if you have not implemented an ECI, an IEP file, 
or if you do not intend to use them 

The presence of any utility, driver, or filter program is dependent upon your in
dividual needs. You can save most of the TRSDOS features in a configuration 
file using the SYSTEM (SYSGEN) command, so the driver and filter programs 
will not be needed in run time applications. If you intend to use the HELP utility, 
your disk must contain the DOS/HLP file 

The owner (update) passwords for TRSDOS files are as follows: 

File Type Extension Owner Password 

System files (/SYS) LSIDOS 
Filter files (/FLT) FILTER 
Driver files (/DVR) DRIVER 
Utility files (/CMD) UTILITY 
BASIC BASIC 
BASIC overlays (/OV$) BASIC 
CON FIG/SYS CCC 
Drive Code Table (/OCT) UTILITY 

Initializer 

Softwares 



4/Device Access 

Device Control Block (DCB) 

The Device Control Block (DCB) is an area of memory that contains informa
tion used to interface the operating system with various logical devices These 
devices include the keyboard ('Kl), the video display (*DO), a printer (*PR), a 
communications line (*CL). and other devices that you may define. 

The following information describes each assigned DCB byte 

DCB+0 (TYPE Byte) 

Bit 7 - If set to "1 ;· the Device Control Block is actually a File Control Block 
(FCB) with the file open. Since DCBs and FCBs are similar, and 
devices may be routed to files, a "device" with this bit set indicates 
a routing to a file. 

Bit 6-lf set to "1;' the device defined by the DCB is filtered or is a device 
filter. 

Bit 5-11 set to "1;' the device defined by the DCB is linked. 

Bit 4- If set to "1;· the device defined by the DCB is routed 

Bit 3-11 set to "1;· the device defined by the DCB is a NIL device.Any out
put directed to the device is discarded .. For any input request, the 
character returned is a null (ASCII value 0) 

Bit 2-11 set to "1;' the device defined by the DCB can handle requests 
generated by the @CTL supervisor call. See the section on Super
visor Calls for more information. 

Bit 1 - If set to "1;' the device defined by the DCB can handle output 
requests which normally come from the @PUT supervisor call. 

Bit 0-lf set to "1;· the device defined by the DCB can handle requests for 
input which normally come from the @GET supervisor call. 

DCB+1 and DCB+2 

Contain the address of the driver routine that supports the hardware assigned 
to this DCB. (In the case of a routed or linked device, the vector may point to 
another DCB.) 

DCB+ 3 through DCB+ 5 

Reserved for system use. 

DCB+6 and DCB+? 

These locations normally contain the two alphabetic characters of the devspec 
The system uses the devspec as a reference in searching the device control 
block tables. 

Soltware9 



Memory Header 

Modules that TRSDOS loads into memory (filters, drivers, and other memory 
modules such as a SPOOL buffer or the extended DEBUG code) are identified 
by a standard front-end header: 

BEGIN: JR START ;Go to actual code 
;beginning 

DEFW END-1 

DEFB 10 

;contains the highest b,te 
;of Memo rY 
;used by the Module 
;Length of naroe, 1-15 
;characters; 
;bits ll-7 reserved for 
;syste111 use 

DEFM 'NAMESTRING' ;LJp to 15 alPhanuroeric 

MODDCB: DEFW $-$ 

DEFW 0 

;characters, with the first 
;character A-Z, This should 
;be a unique name to 
;positively identify the 
;roodule, 
;DCB Pointing to this 
;roodule (if applicable) 
;Spare sYsteM pointer _ 
;RESERVED 

An, additional data storage goes here 

START: Start of actual Prograro code 

END: EQU $ 

As explained under the @GTMOD SVC in the "Supervisor Call" section, the 
location of a specific header can be found provided all modules that are put into 
memory use this header structure. You can locate the data area for a module 
by using @GTMOD to find the start of the header and then indexing in to the 
data area. 

Software 10 



5/Drive Access 

Drive Code Table (DCT) 

TRSDOS uses a Drive Code Table (DCT) to interface the operating system with 
specific disk driver routines. Note especially the fields that specify the allocation 
scheme for a given drive This data is essential in the allocation and accessi
bility of file records. 

The DCT contains eight Hil-byte positions - one for each logical drive des
ignated 0-7 TRSDOS supports a standard configuration of two-floppy 
drives. You may have up to four floppy drives This is the default initializa
tion when TRSDOS is loaded 

Here is the Drive Code Table layout: 

DCT+0 

This is the first byte of a 3-byte vector to the disk 1/0 driver routines This byte 
is normally X'C3.' If the drive is disabled or has not been configured (see the 
SYSTEM command in the Disk System Owner's Manual), this byte is a RET 
instruction (X'C9')-

DCT+1 and DCT+2 

Contain the entry address of the routines that drive the physical hardware. 

DCT+3 

Contains a series of flags for drive specifications, 

Bit 7 -Set to "1" if the drive is software write protected, "llJ" if it is not (See 
the SYSTEM command in the Disk System Owner's Manual.) 

Bit 6-Set to "1" for DDEN (double density), or "llJ" for SDEN (single 
density) 

Bit 5-Set to "1" if the drive is an 8" drive. Set to "llJ" if it is a 5¼" drive. 

Bit 4-A "1" causes the selection of the disk's second side. The first side 
is selected if this bit is "0-'' This bit value matches the side indicator 
bit in the sector header written by the Floppy Disk Controller 
(FDC). 

Bit 3-A "1" indicates a hard drive (Winchester) .. A "llJ" denotes a floppy 
drive (5¼" or 8"). 

Bit 2- Indicates the time delay between selection of a 5¼" drive and the 
first poll of the status register, A "1" value indicates llJ 5 second and 
a"{!)" indicates tllJ second. See the SYSTEM command in the Disk 
System Owner's Manual for more details. 

If the drive is a hard drive, this bit indicates either a fixed or remov
able disk: "1" = fixed, "llJ" = removable 

Bits 1 and llJ - Contain the step rate specification for the Floppy Disk Con
troller, (See the SYSTEM command in the Disk System Owner's 
Manual.) In the case of a hard drive, this field may indicate the drive 
address (0-3)-

DCT + 4 

Contains additional drive specifications. 

Bit 7- (Version 6 2 only) If "1 ", no (<1 CKDRV is done when accessing the 
drive If an application opens several files on a drive, this bit can be 
set to speed 1/0 on that drive after the first successful open is 
performed 

Software 11 



In versions prior to TRSDOS 6.2, this bit is reserved for future use 
In order to maintain compatibility with future releases of TRSDOS, 
do not use this bit 

Bit 6 If "1 ", the controller is capable of double-density mode 

Bit 5-"1" indicates that this is a 2-sided floppy diskette; "11J" indicates a 
1-sided floppy disk. Do not confuse this bit with Bit 4 of OCT +3. 
This bit shows if the disk is double-sided; Bit 4 of OCT+ 3 tells the 
controller what side the current 1/0 is to be on 

If the hard drive bit (OCT+ 3, Bit 3) is set, a "1" denotes double the 
cylinder count stored in OCT+ 6. (This implies that a logical cylin
der is made up of two physical cylinders.) 

Bit 4-11 "1;' indicates an alien (non-standard) disk controller 

Bits 11J-3-Contain the physical drive address by bit selection (11Jl1Jl1J1, 11Jlil111J, 
11)1 lillil, and 111Jl1Jl1J equal logical Drives 11J, 1, 2, and 3, respectively, in 
a default system). The system supports a translation only where no 
more than one bit can be set 

II the alien bit (Bit 4) is set, these bits may indicate the starting head 
number. 

Contains the current cylinder position of the drive It normally stores a copy of 
the Floppy Disk Controller's track register contents whenever the FDC is 
selected for access to this drive. It can then be used to reload the track register 
whenever the FDC is reselected. 

If the alien bit (OCT+ 4, Bit 4) is set, OCT+ 5 may contain the drive select code 
for the alien controller 

DCT+6 

Contains the highest numbered cylinder on the drive. Since cylinders are num
bered from zero, a 35-track drive is recorded as X'22; a 411J-track drive as X'27,' 
and an 811J-track drive as X'4F' If the hard drive bit (OCT+ 3, Bit 3) is set, the true 
cylinder count depends on OCT+ 4, Bit 5 If that bit is a "1;' OCT+ 6 contains 
only half of the true cylinder count 

DCT+7 

Contains allocation information. 

Bits 5-7-Contain the number of heads for a hard drive. 

Bits 11)-4-Contain the highest numbered sector relative to zero A 10-
sector-per-track drive would show X'09.' If DCT + 4, Bit 5 indicates 
2-sided operation, the sectors per cylinder equals twice this 
number 

DCT+8 

Contains additional allocation information 

Bits 5-7 -Contain the number of granules per track allocated in the fore 
matting process. II OCT+ 4, Bit 5 indicates 2-sided operation, the 
granules per cylinder equals twice this number. For a hard drive, 
this number is the total granules per cylinder. 

Bits 11J-4-Contain the number of sectors per granule that was used in the 
formatting operation. 

DCT+9 

Contains the number of the cylinder where the directory is located. For any 
directory access, the system first attempts to use this value to read the direc
tory. If this operation is unsuccessful, the system examines the BOOT granule 
(cylinder 0) directory address byte 

Software 12 



Disk 1/0 Table 

Bytes OCT+ 6, OCT+ 7, and OCT+ 8 must relate without conflicts. That is, the 
highest numbered sector ( + 1) divided by the number of sectors per granule 
( + 1) must equal the number of granules per track ( + 1 ). 

TRSDOS interfaces with hardware peripherals by means of software drivers. 
The drivers are, in general, coupled to the operating system through data 
parameters stored in the system's many tables. In this way, hardware not cur
rently supported by TRSDOS can easily be supported by generating driver soft
ware and updating the system tables 

Disk drive sub-systems (such as controllers for 5¼" drives, 8" drives, and hard 
disk drives) have many parameters addressed in the Drive Code Table (OCT). 
Besides those operating parameters, controllers also require various com
mands (SELECT, SECTOR READ, SECTOR WRITE, and so on) to control the 
physical devices. TRSDOS has defined command conventions to deal with 
most commands available on standard Disk Controllers. 

The function value (hexadecimal or decimal) you wish to pass to the driver 
should go in register B. The available functions are: 

Hex Dec Function Oeeration Performed 

X'00' 0 DCSTAT Test to see if drive is assigned in OCT 

X'01' SELECT Select a new drive and return status 

X'02' 2 DCINIT Set to cylinder 0, restore, set side 0 

X'03' 3 DCRES Reset the Floppy Disk Controller 

X'04' 4 ASTOR Issue FDC RESTORE command 

X'05' 5 STEPI Issue FDC STEP IN command 

X'06' 6 SEEK Seek a cylinder 

X'07' 7 TSTBSY Test to see if requested drive is busy 

X'08' 8 RDHDR Read sector header information 

X'09' 9 RDSEC Read sector 

X'©A' 10 VRSEC Verify if the sector is readable 

X'0B' 11 RDTRK Issue an FDC track read command 

X'0C' 12 HDFMT Format the device 

X'0D' 13 WRSEC Write a sector 

X'0E' 14 WRSYS Write a system sector (for example, directory) 

X'0F' 15 WRTRK Issue an FDC track write command 

Function codes X'10' to X'FF' are reserved for future use 

Directory Records (DIREC) 
The directory contains information needed to access all files on the disk. The 
directory records section is limited to a maximum of 32 sectors because of 
physical limitations in the Hash Index Table. Two additional sectors in the direc
tory cylinder are used by the system for the Granule Allocation Table and the 
Hash Index Table The directory is contained on one cylinder.. Thus, a 10-sector
per-cylinder formatted disk has, at most, eight directory sectors. See the sec-

Software 13 



lion on the Hash Index Table for the formula to calculate the number of directory 
sectors. 

A directory record is 32 bytes in length .. Each directory sector contains eight 
t.lirec,;lory records (256/32 = 8). On system disks, the fiist tvvo diiectory records 
of the first eight directory sectors are reserved for system overlays. The total 
number of files possible on a disk equals the number of directory sectors times 
eight (since 256/32 = 8). The number available for use is reduced by 16 on sys
tem disks to account for those record slots reserved for the operating system. 
The following table shows the directory record capacity (file capacity) of each 
format type. The dash suffix (-1 or -2) on the items in the density column rep
resents the number of sides formatted (for example, SDEN-1 means single 
density, 1-sided). 

Sectors User Files User 
per Directory on Data Files on 

C~linder Sectors Disk .. SYS Disk 

5" SDEN-1 10 8 62 48 
5" SDEN-2 20 18 142 128 
5"DDEN-1 18 16 126 112 
5"DDEN-2 36 32 254 240 
8" SDEN-1 16 14 110 96 
8"SDEN-2 32 30 238 224 
R"nnFl\I-1 ~(,') ?R ??? ?OlR 
8" DDEN-2 60 32 254 240 
Hard Disk• 

•Hard drive format depends on the drive size and type, as well as the user's 
division of the physical drive into logical drives. After setting up and format
ting the drive, you can use the FREE library command to see the available 
files. 

**Note: Two directory records are reserved for BOOT/SYS and DIR/SYS, 
and are included in the figures for this column 

TRSDOS Version 6 is upward compatible with other TRSDOS 2 .. 3 compatible 
operating systems in its directory format. The data contained in the directory 
has been extended. An SVC is included to either display an abbreviated direc
tory or place its data in a user-defined buffer area. For detailed information, see 
the @DODIR and @RAMDIR SVCs. 

The following information describes the contents of each directory field: 

DIR+0 

Contains all attributes of the designated file. 

Bit 7 - If "0;' this flag indicates that the directory record is the file's primary 
directory entry (FPDE). If "1;' the directory record is one of the file's 
extended directory entries (FXDE). Since a directory entry can 
contain information on up to four extents (see notes on the extent 
fields, beginning with DIR+ 22), a file that is fractured into more 
than four extents requires additional directory records. 

Bit 6-Specifies a SYStem file if "1;' a nonsystem file if "0'.' 

Bit 5- If set to "1;' indicates a Partition Data Set (PDS) file 

Bit 4-lndicates whether the directory record is in use or not If set to "1;' 
the record is in use. If "0;' the directory record is not active, 
although it may appear to contain directory information. In contrast 
to some operating systems that zero out the directory record when 
you remove a file, TRSDOS only resets this bit to zero. 

Bit 3-Specifies the visibility. If "1;' the file is INVisible to a directory dis
play or other library function where visibility is a parameter: If a "0;' 
then the file is VISible. (The file can be referenced if specified by 
name by an @INIT or @OPEN SVC.) 

Software 14 



Bits 0-2-Contain the USER protection level of the file. The 3-bit binary 
value is one of the following: 

0 = FULL 2 = RENAME 4 = UPDATE 6 = EXECUTE 
1 = REMOVE 3 = WRITE 5 = READ 7 = NO ACCESS 

DIR+1 

Contains various file flags and the month field of the packed date of last 
modification. 

Bit 7 -Set to "1" if the file was "CREATEd" (see CREATE library com
mand in the Disk System Owner's Manual). Since the CREATE 
command can reference a file that is currently existing but non
CREATEd, it can turn a non-CREATEd file into a CREATEd one 
You can achieve the same effect by changing this bit to a "1:' 

Bit 6-lf set to "1;' the file has not been backed up since its last modifica
tion. The BACKUP utility is the only TRSDOS facility that resets 
this flag. It is set during the close operation if the File Control Block 
(FCB + 0, Bit 2) shows a modification of file data. 

Bit 5- If set to "1;· indicates a file in an open condition with UPDATE 
access or greater 

Bit 4-11 the file was modified during a session where the system date was 
not maintained, this bit is set to "1'.' This specifies that the packed 
date of modification (if any) stored in the next three fields is not the 
actual date the modification occurred If this bit is "1," the 
directory command displays plus signs ( + ) between the date 
fields 

Bits 0-3- Contain the binary month of the last modification date If this 
field is a zero, DATE was not set when the file was established or 
since if it was updated 

DIR+2 

Contains the remaining date of modification fields. 

Bits 3-7 - Contain the binary day of last modification 

Bits 0-2-Contain the binary year minus 80 .. For example, 1980 is coded 
as 000, 1981 as 001, 1982 as 010, and so on 

DIR+3 

Contains the end-of-file offset by1e. This by1e and the ending record number 
(ERN) form a pointer to the by1e position that follows the last by1e written .. This 
assumes that programmers, interfacing in machine language, properly main
tain the next record number (NAN) offset pointer when the file is closed 

DIR+4 

Contains the logical record length (LRL) specified when the file was generated 
or when it was later changed with a CLONE parameter. 

DIR+ 5 through DIR+ 12 

Contain the name field of the filespec. The filename is left justified and padded 
with trailing blanks. 

DIR+ 13 through DIR+ 15 

Contain the extension field of the filespec. It is left justified and padded with 
trailing blanks. 

DIR+ 16 and DIR + 17 

Contain the OWNER password hash code. 

DIR+ 18 and DIR + 19 

Contain the USER password hash code. The protection level in DIR+ 0 is asso
ciated with this password. 

Software 15 



DIR+20and DIR+21 

Contain the ending record number (ERN), which is based on full sectors. If the 
ERN is zero, it indicates that no writing has taken place (or that the file was not 
closed properly). If the LRL is not 256, the ERN represents the sector where the 
EOF occurs. You should use ERN minus 1 to account for a value relative to sec
tor 0 of the file. 

DIR+22and DIR+23 

This is the first extent field. Its contents indicate which cylinder stores the first 
granule of the ex1ent, which relative granule it is, and how many contiguous 
grans are in use in the extent. 

DIR+22-Contains the cylinder value for the starting gran of that extent. 

DIR+ 23, Bits 5-7 - Contain the number of the granule in the cylinder indi
cated by DIR+ 22 which is the first granule of the file for that 
ex1ent. This value is relative to zero ("0" denotes the first gran, 
"1" denotes the second, and so on). 

DIR+23, Bits 0-4-Contain the number of contiguous granules, relative 
to 0 ("0" denotes one gran, "1" denotes two, and so on). Since 
the field is five bits, it contains a maximum of X' 1 F' or 31, which 
represents 32 contiguous grans 

........... ' .... " - -~ "' .......... ' ........ 
LllnTal."'i'CUIU 1,11n,,.., 

Contain the fields for the second extent. The format is identical to that for 
Extent 1 

DIR+26 and DIR+27 

Contain the fields for the third ex1ent The format is identical to that for Extent t. 

DIR+28 and DIR+29 

Contain the fields for the fourth extent The format is identical to that for 
Ex1ent t 

DIR+30 

This is a flag noting whether or not a link exists to an ex1ended directory record. 
If no further directory records are linked, the by1e contains X'FF.' A value of X'FE' 
in this by1e establishes a link to an extended directory entry. (See "Ex1ended 
Directory Records" below.) 

DIR+31 

This is the link to the extended directory entry noted by the previous by1e. The 
link code is the Directory Entry Code (DEC) of the extended directory record. 
The DEC is actually the position of the Hash Index Table by1e mapped to the 
directory record. For more information, see the section "Hash Index Table'.' 

Extended Directory Records 
Extended directory records (FXDE) have the same format as primary directory 
records, except that only By1es 0, 1, and 21-31 are utilized. Within By1e 0, only 
Bits 4 and 7 are significant Byte 1 contains the DEC of the directory record of 
which this is an extension. An extended directory record may point to yet 
another directory record, so a file may contain an "unlimited" number of ex1ents 
(limited only by the total number of directory records available) 

Granule Allocation Table (GAT) 

The Granule Allocation Table (GAT) contains information on the free and 
assigned space on the disk. The GAT also contains data about the formatting 
used on the disk. 

Software 16 



A disk is divided into cylinders (tracks) and sectors. Each cylinder has a spec
ified number of sectors .. A group of sectors is allocated whenever additional 
space is needed This group is called a granule. The number of sectors per 
granule depends on the total number of sectors available on a logical drive. The 
GAT provides for a maximum of eight granules per cylinder. 

In the GAT bytes, each bit set to "1" indicates a corresponding granule in use 
(or locked out). Each bit reset to "0" indicates a granule free to be used In a 
GAT byte, bit 0 corresponds to the first relative granule, bit 1 to the second rel· 
ative granule, bit 2 the third, and so on. A 5¼" single density diskette is format· 
ted at 10 sectors per cylinder, 5 sectors per granule, 2 granules per cylinder. 
Thus, that configuration uses only bits 0 and 1 of the GAT byte .. The remainder 
of the GAT byte contains all 1's, denoting unavailable granules. Other formatting 
conventions are as follows: 

Sectors Sectors Granules Maximum 
per per per No. of 

Cylinder Granule Cylinder Cylinders 

5" SDEN 10 5 2 80 
5" DDEN 18 6 3 80 
8" SDEN 16 8 2 77 
8" DD°EN 30 10 3 77 
Hard Disk 32 16 8 153 

•Hard drive format depends on the drive size and type, as well as the user's divi
sion of the drive into logical drives These values assume that one physical 
hard disk is treated as one logical drive 

The above table is valid for single-sided disks. TRSDOS supports double-sided 
operation if the hardware interiacing the physical drives to the CPU allows it. A 
two-headed drive functions as a single logical drive, with the second side as a 
cylinder-for-cylinder extension of the first side. A bit in the Drive Code Table 
(DCT + 4, Bit 5) indicates one-sided or two-sided drive configuration 

A Winchester-type hard disk can be divided by heads into multiple logical 
drives. Details are supplied with Radio Shack drives 

The Granule Allocation Table is the first relative sector of the directory cylinder 
The following information describes the layout and contents of the GAT 

GAT + X'00' through GAT + X'5F' 

Contains the free/assigned table information GAT + 0 corresponds to cylinder 
0, GAT + 1 corresponds to cylinder 1, GAT + 2 corresponds to cylinder 2, and so 
on. As noted above, bit 0 of each byte corresponds to the first granule on the 
cylinder, bit 1 to the second granule, and so on A value of "1" indicates the 
granule is not available for use 

GAT + X'60' through GAT + X'BF' 

Contains the available/locked out table information. It corresponds cylinder for 
cylinder in the same way as the free/assigned table .. It is used during mirror
image backups to determine if the destination diskette has the proper capacity 
to effect a backup of the source diskette. This table does not exist for hard 
disks; for this reason, mirror-image backups cannot be performed on hard disk 

GAT + X'C0' through GAT + X'CA' 

Used in hard drive configurations; extends the free/assigned table from X'00' 
through X'CPi. Hard drive capacity up to 203 (0-202) logical or 406 physical cyl
inders is supported 

GAT+X'CB' 

Contains the operating system version that was used in formatting the disk 
For example, disks formatted under TRSDOS 6 2 have a value of X'62' 
contained in this byte It is used to determine whether or not the disl< 
contains all of the parameters needed for TRSDOS operation 

Software 17 



GAT+X'CC' 

Contains the number of cylinders in excess of 35, It is used to minimize the time 
required to compute the highest numbered cylinder formatted on the disk. It is 
excess 35 io provide compaiibiliiy wiih alien sysiems nut maintaining this byte. 
If you have a disk that was formatted on an alien system for other than 35 cyl
inders, this byte can be automatically configured by using the REPAIR utility. 
{See the section on the REPAIR utility in the Disk System Owner's Manual.) 

GAT+X'CD' 

Contains data about the formatting of the disk 

Bit 7 - if set to ''1;' the disk is a data disk. If "0;' the disk is a system disk. 

Bit 6-if set to ''1;' indicates double-density formatting. If "0;' indicates 
single-density formatting. 

Bit 5-lf set to "1;' indicates 2-sided disk. If "0;· indicates 1-sided disk. 

Bits 3-4- Reserved 

Bits 0-2-Contain the number of granules per cylinder minus 1 

GAT + X'CE' and GAT + X'CF' 

Contain the 16-bit hash code of the disk master password. The code is stored 
in standard low-order, hi~h-order format 

GAT + X'D0' through GAT + X'D7' 

Contain the disk name. This is the name displayed during a FREE or DIR oper
ation The disk name is assigned during formatting or during an ATTRIB disk 
renaming operation. The name is left justified and padded with blanks. 

GAT + X'D8' through GAT + X'DF' 

Contain the date that the diskette was formatted or the date that it was used as 
the destination in a mirror image backup operation in the format mrn/dd/yy 

GAT + X'E0' through GAT + X'FF' 

Reserved for system use 

In Version 6.2: 

GAT + X'E0' through GAT + X'F4' 

Reserved for system use 

GAT + X'F5' through GAT + X'FF' 

Contain the Media Data Block {MDB) 

GAT + X'F5' through GAT + X'FB' - the identifying header These four 
bytes contain a 3 (X'03'). followed by the letters LSI (X'4C',X'53',X'49') 

GAT + X'FB' through GAT9 + X'FF' - the last seven bytes of the OCT 
in use when the media was formatted. FORMAT, MemDISK, and 
TRSFORM6 install this information See Drive Control Table (OCT) for 
more information on these bytes 

Hash Index Table (HIT) 
The Hash Index Table is the key to addressing any file in the directory. It pin
points the location of a file's directory with a minimum of disk accesses, keeping 
overhead low and providing rapid file access. 

The system's procedure is to construct an 11-byte filename/extension field. The 
filename is left-justified and padded with blanks. The file extension is then 
inserted and padded with blanks; it occupies the three least significant bytes of 

Software 18 



the 11·byte field. This field is processed through a hashing algorithm which pro
duces a single byte value in the range X'01' through X'FP. (A hash value of X'00' 
indicates a spare HIT position.) 

The system then stores the hash code in the Hash Index Table (HIT) at a posi
tion corresponding to the directory record that contains the file's directory. Since 
more than one 11-byte string can hash to identical codes, the opportunity for 
"collisions" exists. For this reason, the search algorithm scans the HIT for a 
matching code entry, reads the directory record corresponding to the matching 
HIT position, and compares the filename/extension stored in the directory with 
that provided in the file specification. If both match, the directory has been 
found. If the two fields do not match, the HIT entry was a collision and the algo
rithm continues its search from the next HIT entry. 

The position of the HIT entry in the hash table is called the Directory Entry Code 
(DEC) of the file. All files have al least one DEC. Files that are extended beyond 
four extents have a DEC for each extended directory entry and use more than 
one filename slot To maximize the number of file slots available, you should 
keep your files below five extents where possible, 

Each HIT entry is mapped to the directory sectors by the DEC's position in the 
HIT Think of the HIT as eight rows of 32-byte fields .. Each row is mapped to one 
of the directory records in a directory sector: The first HIT row is mapped to the 
first directory record, the second HIT row to the second directory record, and so 
on. Each column of the HIT field (0-31) is mapped to a directory sector. The first 
column is mapped to the first directory sector in the directory cylinder (not 
including the GAT and HIT). Therefore, the first column corresponds to sector 
2, the second column to sector 3, and so on. The maximum number of HIT col
umns used depends on the disk formatting according to the formula: 
N = number of sectors per cylinder minus two, up to 32. 

The following chart shows the correlation of the Hash Index Table to the direc
tory records. Each byte value shown represents the position in the HIT This 
position value is the DEC. The actual contents of each byte is either a X(00) 
indicating a spare slot, or the 1-byte hash code of the file that occupies the cor
responding directory record. 

Columns 

Row1 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 

Row2 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 

Row3 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 
50 51 52 53 54 55 56 57 58 59 SA SB SC SD SE SF 

Row4 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 
70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 

Rows 80 81 82 83 84 85 86 87 88 89 BA BB BC 8D BE BF 
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F 

Row6 A0 A1 A2 A3 A4 AS A6 A7 AB A9 AA AB AC AD AE AF 
B0 B1 B2 B3 B4 BS B6 B7 BB B9 BA BB BC BD BE BF 

Row7 C0 C1 C2 C3 C4 cs C6 C7 ca C9 CA CB cc CD CE CF 
D0 D1 D2 D3 D4 D5 D6 D7 DB D9 DA DB DC DD DE DF 

Rows E0 E1 E2 E3 E4 ES E6 E7 EB E9 EA EB EC ED EE EF 
F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF 

A 5¼" single density disk has 10 sectors per cylinder, two of which are reserved 
for the GAT and HIT Since only eight directory sectors are possible, only the 
first eight positions of each HIT row are used. Other formats use more columns 
of the HIT, depending on the number of sectors per cylinder in the formatting 
scheme. 

The eight directory records for sector 2 of the directory cylinder correspond to 
assignments in HIT positions 00, 20, 40, 60, 80, A0, C0, and E0. On system 

Software 19 



disks, the following positions are reserved for system overlays .. On data disks, 
these positions (except for li'lli'l and li'l1) are available to the user. 

li'lli'l- BOOT/SYS 211l SYS6/SYS 
li'l1 - DIR/SYS 21 SYS7/SYS 
li'l2 - SYSli'l/SYS 22 - SYS8/SYS 
li'l3 - SYS1 /SYS 23 - SYS9/SYS 
li'l4-SYS2/SYS 24-SYS111l/SYS 
11)5 - SYS3/SYS 25 - SYS11 /SYS 
li'l6 - SYS4/SYS 26 - SYS 12/SYS 
11l7 -SYS5/SYS 27 -SYS13/SYS 

These entry positions correspond to the first two rows of each directory sector 
for the first eight directory sectors. Since the operating system accesses these 
overlays by position in the HIT rather than by filename, these positions are 
reserved on system disks 

The design of the Hash Index Table limits the number of files on any one drive 
to a maximum of 256. 

Locating a Directorv Record 

Because of the coding scheme used on the entries in the HIT table, you can 
locate a directory record with only a few instructions. The instructions are: 

and 

AND !FH 
ADD A,2 

AND 121E121H 

( calculates the sector) 

(calculates the offset in that sector) 

For example, if you have a Directory Entry Code (DEC) of X'84, the following 
occurs when these instructions are performed: 

AND !FH 

ADD A,2 

Value of accumulator 
A=X'84' 

A=X'li'l4' 

A=X'li'l6' 
The record is in the seventh 
sector of the directory cylinder 
(li'l-6) 

Using the Directory Entry Code (DEC) again, you can find the offset into the 
sector that was found using the above instructions by executing one 
instruction: 

AND 121E121H 

Value of accumulator 
A=X'84' 

A=X'80' 
The directory record is X'811l' (128) 
by1es from the beginning of 
the sector 

If the record containing the sector is loaded on a 256-byte boundary (LSB of the 
address is X'li'lli'l') and HL points to the starting address of the sector, thim you 
can use the above value to calculate the actual address of the directory record 
by executing the instruction: 

LD L,A 

Software 20 



When executed after the calculation of the offset, this causes HL to point to the 
record. For example: 

A=X'80' 
LD HL , 11212ll2lH ;Where sector is loaded 
LD L , A ;Replace LSB with offset 

HL now contains 4280H, which is the address of the directory record you 
wanted 

If you cannot place the sector on a 256-byte boundary, then you can use the 
following instructions: 

A=X'80' 
LD HL ,425GH ;Where sector is loaded 
LD E ,A ;Put offset in E (LSB) 

LD D ,Ill ;Put a zero in D (MSB) 
ADD HL , DE ;Add two values together 

HL now contains 42D6H, which is the address of the directory record. 

Note that the first DEC found with a matching hash code may be the file's 
extended directory entry (FXDE). Therefore, if you are going to write system 
code to deal with this directory scheme, you must properly deal with the FPDE/ 
FXDE entries. See Directory Records for more information. 

Software21 





6/File Control 

File Control Block (FCB) 

The File Control Block (FCB) is a 32-byte memory area. Before the file is 
opened, this space holds the file's filespec After an @OPEN or @INIT super
visor call is performed, the system uses this area to interface with the file, and 
replaces the filespec with other information. When the file is closed, thefilespec 
(without any specified password) is returned to the FCB. 

While a file is open, the contents of the FCB are dynamic .. As records are written 
to or read from the disk file, specific fields in the FCB are modified. Avoid chang
ing the contents of the FCB during the time a file is open, unless you are sure 
that the change will not affect the integrity of the file. 

During most system access of the FCB, the IX index register is used to refer
ence each field of data. Register pair DE is used mainly for the initial reference 
to the FCB address. The information contained in each field of the FCB is as 
follows: 

FCB+0 

Contains the TYPE code of the control block. 

Bit 7- If set to "1;· indicates that the file is in an open condition; if "0;' the 
file is assumed closed. This bit can be tested to determine the 
"open" or "closed" status of an FCR 

Bit 6-ls set to "1" if the file was opened with UPDATE access or higher. 

Bit 5- Indicates a Partition Data Set (PDS) type file. 

Bits 4-3- Reserved for future use. 

Bit 2-ls set to "1" if the system performed any WRITE operation on this 
file .. It is used to update the MOD flag in the directory record when 
the file is closed. 

Bits 1-0 - Reserved for future use. 

FCB+1 

Contains status flag bits used in read/write operations by the system. 

Bit 7 - If set to "1;· indicates that 1/0 operations will be either full sector 
operations or byte operations of logical record length (LAL) less 
than 256. If "0;' only sector operations will be performed. If you are 
going to use only full-sector 1/0, you can reduce system overhead 
by specifying the LAL at open time as 0 (indicating 256) An LAL 
of other than 256 sets bit 7 to" 1" on open. 

Bit 6- If set to "1;· indicates that the end of file (EOF) is to be set to ending 
record number (ERN) only if next record number (NAN) exceeds 
the current value of EOF This is the case if random access is to be 
used. During random access, the EOF is not disturbed unless you 
extend the file beyond the last record slot Any time the position 
routine (@POSN) is called, bit 6 is automatically set If bit 6 is"©;' 
then EOF will be updated on every WRITE operation 

Bit 5- If "0;' then the disk 1/0 buffer contains the current sector denoted 
by NAN. If set to "1;· then the buffer does not contain the current 
sector. During byte 1/0, bit 5 is set when the last byte of the sector 
is read A sector read resets the bit, showing the buffer to be 
current 

Software 23 



Bit 4- If set to "1;' indicates that the buffer contents have been changed 
since the buffer was read from the file. It is used by the system to 
determine whether U1e bu Her must be vvritten bad, to the file before 
reading another record. If "0;' then the buffer contents were not 
changed 

Bit 3-Used to specify that the directory record is to be updated each time 
the NRN exceeds the EOF. (The normal operation is to update the 
directory only when an FCB is closed,) Some unattended opera
tions may use this extra measure of file protection. It is specified by 
adding an exclamation mark ("!") to the end of a filespec when the 
filespec is requested at open time 

Bits 2-0-Contain the user (access) protection level as retrieved from the 
directory of the file .. The 3-bit binary value is one of the following: 

0 = FULL 2 = RENAME 4 = UPDATE 6 = EXECUTE 
1 = REMOVE 3 = WRITE 5 = READ 7 = NO ACCESS 

FCB+2 

Used by Partition Data Set (PDS) files. 

FCB+3 and FCB+4 

Contain the butter address 1n low-orcier, hiyfl-url.lt::1 lu1111c1L 11,b is i.hc buffer 
address specified in register pair HL when the @INIT or @OPEN SVC is 
performed. 

FCB+S 

Contains the relative byte offset within the current buffer for the next 1/0 oper
ation. If this byte has a zero value, then FCB + 1, Bit 5 must be examined to see 
if the first byte in the current buffer is the target position or if it is the first byte of 
the next record. If you are performing sector 1/0 of byte data (that is, maintain
ing your own buffering), then it is important to maintain this byte when you close 
the file if the true end of file is not at a sector boundary. 

FCB+6 

Bits 3-7- Reserved for system use. 

Bits 0-2- Contain the logical drive number in binary of the drive contain
ing the file. Do not modify this byte; altering this value may damage 
other files. This byte and FCB + 7 are the only links to the file's 
directory information. 

FCB+7 

Contains the directory entry code (DEC) for the file. This code is the offset in the 
Hash Index Table where the hash code for the file appears .. Do not modify this 
byte; altering this value may damage other files. This byte and FCB + 6 are the 
only links to the directory information for the file. 

FCB+8 

Contains the end-of-file byte offset. This byte is similar to FCB + 5 except that it 
pertains to the end of file rather than to the next record number. 

FCB+9 

Contains the logical record length that was in effect when the file was opened. 
This may not be the same LRL that exists in the directory. The directory LRL is 
generated at the file creation and never changes unless the file is overwritten. 

FCB+10 and FCB+11 

Contain the next record number (NRN), which is a pointer for the next 1/0 oper
alion. When a file is opened, NRN is zero, indicating a pointer to the beginning. 
Each sequential sector 1/0 advances NRN by one. 

Software 24 



FCB + 12 and FCB + 13 

Contain the ending record number (ERN) of the file .. This is a pointer to the sec
tor that contains the end-of-file indicator. In a null file (one with no records), 
ERN equals 0. If one sector has been written, ERN equals 1. 

FCB + 14 and FCB + 15 

Contain the same information as the first extent of the directory. This represents 
the starting cylinder of the file (FCB + 14) and the starting relative granule within 
the starting cylinder (FCB + 15). FCB + 15 also contains the number of contig
uous granules allocated in the extent. These bytes are used as a pointer to the 
beginning of the file referenced by the FCB. 

FCB + 16 through FCB + 19 

This 4-byte entry contains granule allocation information for an extent of the file 
Relative bytes 0 and 1 contain the total number of granules allocated to the file 
up to but not including the extent referenced by this field. Relative byte 2 con
tains the starting cylinder of this extent Relative byte 3 contains the starting rel
ative granule for the extent and the number of contiguous granules. 

FCB + 20 through FCB + 23 

Contain information similar to the above but for a second extent of the file 

FCB + 24 through FCB + 27 

Contain information similar to the above but for a third extent of the file. 

FCB + 28 through FCB + 31 

Contain information similar to the above but for a fourth extent of the file 

The file control block contains information on only four extents at one time If 
the file has more than four extents, additional directory accessing is done to 
shift the 4-byte entries in order to make space for the new extent information 

Although the system can handle a file of any number of extents, you should 
keep the number of extents small. The most efficient file is one with a single 
extent The number of extents can be reduced by copying the file to a disk that 
contains a large amount of free space. 

Software 25 





7/TRSDOS Version 6 
Programming Guidelines 

Converting to TRSDOS Version 6 

This section provides suggestions on writing programs effectively with 
TRSDOS Version 6, and on converting programs created with TRSDOS t3 
and LOOS 51 operating systems for use with TRSDOS Version 6. This infor
mation is by no means complete, but presents some important concepts to 
keep in mind when using TRSDOS Version 6 

When programming in assembly language, you can use TRSDOS Version 6 
routines for commonly used operations. These are accessed through the 
supervisor calls (SVCs) instead of absolute call addresses. Nothing in the sys
tem can be accessed via any absolute address reference (except Z-80 AST 
and NMI jump vectors) 

IMPORTANT NOTE: TRSDOS provides all functions and storage through 
supervisor calls. No address or entry point below 3000H is documented or sup
ported by Radio Shack 

The keyboard is not accessible via "peeking;· and the video RAM cannot be 
"poked'.' The keyboard and video are accessible only through the appropriate 
SVCs. 

Another distinction is that TRSDOS Version 6 handling of logical byte 1/0 
devices (keyboard, video, printer, communications line) completely supports 
error status feedback. A FLAG convention is uniform throughout these device 
drivers as well as physical byte 1/0 associated with files. The device handling 
in TRSDOS Version 6 is completely independent. That means that byte 1/0, 
both logical and physical, can be routed, filtered, and linked .. Therefore, it is 
important to test status return codes in all applications using byte 1/0 regard
less of the device that the application expects to be used, since re-direction to 
some other device is possible at the TRSDOS level Appropriate action must be 
taken when errors are detected. 

Modules loaded into memory and protected by lowering HIGH$ must include 
the standard header, as described earlier under "Memory Header.:· The 
@GTMOD supervisor call requires that this header be present in every resident 
module for proper operation. 

The file password protection terms of UPDATE and ACCESS have been 
changed in TRSDOS Version 6 to OWNER and USER, respectively. The addi
tional file protection level of UPDATE has been added. A file with UPDATE pro
tection level can be read or written to, but its end of file cannot be extended 
This protection can be useful in a random access fixed-size file or in a file where 
shared access is to take place 

Files opened with UPDATE or greater access are indicated as open in their 
directory. Attempting to open the file again forces a change to READ access 
protection and a "File already open" error code. It is therefore important for 
applications to CLOSE files that are opened 

For the convenience of applications that access files only for reading, you can 
inhibit the "file open bit'.' If you set bit 0 of the system flag SFLAG$ (see the 
@FLAGS supervisor call). the file open bit is not set in the file's directory Once 
set, the next @OPEN or @INIT SVC automatically resets bit 0 of SFLAG$. 
Note that you cannot use this procedure for files being written to, since it inhibits 
the CLOSE process 

Software 27 



Some application programs need access to certain system parameters and 
variables. A number of flags, variables, and port images can be accessed rel
ative to a flag pointer obtained via the @FLAGS supervisor call. These param
eters are only accessible relative to this pointer, as the pointer's location may 
change (See the explanation of the @FLAGS SVC.) 

All applications must honor the contents of HIGH$, This pointer contains the 
highest RAM address usable by any program. You can retrieve and change 
HIGH$ by using the @HIGH$ SVC. 

TRSDOS Version 6 library commands and utilities supply a return code (RC) at 
completion. The RC is returned in register pair HL The value returned is either 
zero (indicating no error), a number from one through 62 (indicating an error as 
noted in Appendix A. TRSDOS Error Messages). or X'FFFF' (indicating an 
extended error which is currently not assigned an error number). TRSDOS Ver
sion 6 Job Control Language (JCL) aborts on any program terminating with a 
non-zero RC value. Applications should therefore properly set the return code 
register pair HL before exiting 

TRSDOS Version 6 library commands are also invokable via the @CMNDR 
SVC which executes the command. Library commands properly maintain the 
Stack Pointer (SP) and exit via a RET instruction. In this manner, control is 
returnP.n to the invoking program with the RC present for testing. For com
mands invoked with the (ct•CMNDI SVC or prompted tor via me (f!'l::XI 1 ::,\IC, 
the SP is restored to the system stack. The top of the stack will contain an 
address suitable for simulating an @EXIT SVC; thus, if your application pro
gram properly maintains the integrity of the stack pointer, it can exit after setting 
the RC via a RET instruction instead of an @EXIT SVC 

TRSDOS Version 6 diskette and file structure is identical to that used in LOOS 
51 This includes formatting, directory structure, and data address mark con
ventions TRSDOS Version 6 system diskettes, t1owever, use the entire BOOT 
track (track 0) This compatibility means that data files may be used inter
changeably between LOOS 51 equipped machines and TRSDOS Version 6 
equipped machines; the diskettes themselves are readable and writable across 
both operating systems 

The methods of internal handling of device linking and filtering have been 
changed from LOOS 51 ( It is beyond the scope of this manual to explain the 
internal functioning of TRSDOS Version 6.) Device filters must adhere to a strict 
protocol of linkage in order to function properly. See the section on "Device 
Driver and Filter Templates" for information on device driver and filter protocol 

Stack Handling Restrictions* 
Interrupt tasks and filters that deal with the keyboard or video must not place 
the stack pointer above X'F3FF'. This is because any operation that requires the 
keyboard or video RAM switches in the 3K bank at X'F400' and suppresses the 
stack until it is switched out again. If the system accesses the stack at any time 
during this period, the integrity of the stack is destroyed 

•in TRSDOS 6.0 0, the stack cannot be placed above X'F3FF' for any reason 

Software 28 



Programming With Restart Vectors 

The Restart instruction (RST) provides the assembly language programmer 
with the ability to call a subroutine with a one-byte calL If a routine is called 
many times by a program, the amount of space that is saved by using the RST 
instruction (instead of a three-byte CALL) can be significant 

In TRSDOS a RST instruction is also used to interface to the operating system 
The system uses RST 28H for supervisor calls RSTS ©©H, 3©H, and 38H are 
for the system's internal use, 

RSTs ©SH, 1©H, 18H, and 2©H are available for your use, Caution: Some pro
grams, such as BASIC, may use some of these RSTs, 

Each RST instruction calls the address given in the operand field of the instruc
tion, For example, RST 18H causes the system to push the current program 
counter address onto the stack and then set the program counter to ad<:lress 
lillil18H. RST 2©H causes a jump to location ©©20H, and so on 

Each RST has three bytes reserved for the subroutine to use. If the subroutine 
will not fit in three bytes, then you should code a jump instruction (JP) to where 
the subroutine is located At the end of the subroutine, code a return instruction 
(RET) Control is then transferred to the instruction that follows the RST 

For example, suppose you want to use RST 18H to call a subroutine named 
"ROUTINE:' The following routine loads the restart vector with a jump instruc
tion and saves the old contents of the restart vector for later use 

SETRST: LD rn ,11ll1l18H iRestart area address 
LD IY,RDATA iDat a a re a address 
LD B,3 ;Nuo1be r of b }' t es to /JlO I.I e 

LOOP: LD A,<J)() mead a b >' t e fr D ftl 

;restart a re a 
LD C, < I Y) iRe ad a byte fro hi data 

; a re a 
LD (I)() ,C ;store this byte in 

irestart area 
LD (I',') ,A iSto re this b ,, t e in data 

; a re a 
INC JV ; Inc re111ent rest a rt area 

;pointer 
INC IY ; Inc re1,1ent data area 

;pointer 
DJNZ LOOP iLooP ti 11 3 b ,, t es fll □ tJ e d 
RET ;Return 1..,1hen done 

RDATA: DEFB 11lC3H ;Jur,IP instruction (JP) 
DEHi ROUTINE ;ope rarid < narr1e of 

;subroutine) 

Before exiting the program, calling the above routine again puts the original 
contents of the restart vector back in place 

KFLAG$ (BREAK), (PAUSE), and (ENTER) 
Interfacing 

KFLAG$ contains three bits associated with the keyboard functions of BREAK, 
PAUSE (ISHIFTI @), and ENTER .. A task processor interrupt routine (called the 
KFLAG$ scanner) examines the physical keyboard and sets the appropriate 
KFLAG$ bit if any of the conditions are observed, Similarly, the RS-232C driver 
routine also sets the KFLAG$ bits if it detects the matching conditions being 
received 

Software 29 



Many applications need to detect a PAUSE or BREAK while they are running. 
BASIC checks for these conditions after each logical statement is executed 
(that is, at the end of a line or at a":"). That is how, in BASIC, you can stop a 
program with the IBREAKI key or pause a listing. 

One method of detecting the condition in previous TRSDOS operating systems 
was to issue the @KBD supervisor call to check for BREAK or PAUSE 
(ISHIFTI@)), ignoring all other keys. Unfortunately, this caused keyboard type
ahead to be ineffective; the @KBD SVC flushed out the type-ahead buffer if 
any other keystrokes were stacked up. 

Another method was to scan the keyboard, physically examining the keyboard 
matrix. An undesirable side effect of this method was that type-ahead stored up 
the keyboard depression for some future unexpected input request Examining 
the keyboard directly also inhibits remote terminals from passing the BREAK or 
PAUSE condition. 

In TRSDOS Version 6, the KFLAG$ scanner examines the keyboard for the 
BREAK, PAus·E, and ENTER functions. If any of these conditions are detected, 
appropriate bits in the KFLAG$ are set (bits lil, 1, and 2 respectively) 

Note that the KFLAG$ scanner only sets the bits. It does not reset them 
because the "events" would occur too fast for your program to detect Think of 
the KFLAG$ bits as a latch. Once a condition is detected (latched), it remains 
latched until somethmg exammes the Iatct1 and resets It-a runctIon to oe per
formed by your KFLAG$ detection routine 

Under Version 6..2, you can use the (i, CKBRKC SVC, SVC 106, to see if the 
BREAK key has been pressed. If a BREAK condition exists, (u CKBRKC resets 
the break bit of KFLAG$ 

For illustration, the following example routine uses the BREAK and PAUSE 
conditions: 

KFLAG$ 
@FLAGS 
@KBD 
@KEY 
@PAUSE 
CKPAWS 

FLUSH 

PROMPT 

RESKFL 

RESKFL! 

EQU 1121 
EQU 11211 
EQU 8 
EQU 1 
EQU 18 
LO A ,@FLAGS 
RST 28H 
LO A,(!Y+KFLAG$l 
RRCA 
JP C,GOTBRK 
RRCA 
RET NC 
CALL RESKFL 
PUSH DE 
LO A,@KBD 
RST 28H 
JR Z,FLUSH 
POP DE 
PUSH DE 
LO A,@KEY 
RST 28H 
POP DE 
CP 8121H 
JP Z ,GOTBRK 
CP 8121H 
JR Z,PROMPT 
PUSH HL 
PUSH AF 
LO A ,@FLAGS 
RST 28H 
LO A,(IY+KFLAG$l 
AND 121FBH 

Software 30 

iGet Flags Pointer 
;into register IY 
iGet the KFLAG$ 
iB it 121 to car rY 
iGo on BREAK 
iB it 1 to car n· 
;Return if no Pause 
iReset the flag 

iF!ush t>·Pe-ahead 
ibuffer while 
;ignorin9 errors 

iWait on f; e >' en t rY 

iAbo rt or, IBREAKI 

;I snore PAUSEi 
ielse 
;reset KFLAG$ 

iGet flags Pointer 
;into resister IY 
iGet the flag 
iSt rip ENTER, 



LO ( I Y+KFLAG$) ,A ; PAUSE, BREAK 
PUSH BC 
LO B ·,1s 
LO A,@PAUSE ;Pause a 1ah i 1 e 
RST ZBH 
POP BC 
LO A, ( I Y+KFLAG$) iChecK if finger is 
AND 3 ; st i 11 on ~t e }' 
JR NZ ,RESKFL1 iReset it aftain 
POP AF iRestore re listers 
POP HL iand exit 
RET 

The best way to explain this KFLAG$ detection routine is to take it apart and 
discuss each subroutin1;1. The first piece reads the KFLAG$ contents: 

KFLAG$ EQU 1lil 
CKPAWS LO A,@FLAGS iGet Flags Pointer 

RST 28H iinto register IY 
LO A,( l'/+KFLAG$) iGet the KFLAG$ 
RRCA iBit 121 to earn 
JP C,GOTBRK iGo on BREAK 
RRCA iBit 1 to earn' 
RET NC iReturn if no Pause 

The @FLAGS SVC obtains the flags pointer from TRSDOS. Note that if your 
application uses the IY index register, you should save and restore it within the 
CKPAWS routine. (Alternatively, you could use @FLAGS to calculate the loca
tion of KFLAG$, use register HL instead of IY, and place the address into the LD 
instructions of CKPAWS at the beginning of your application.) 

The first rotate instruction places the BREAK bit into the carry flag. Thus, if a 
BREAK condition is in effect, the subroutine branches to "GOTBRK;' which is 
your BREAK handling routine 

If there is no BREAK condition, the second rotate places what was originally in 
the PAUSE bit into the carry flag. If no PAUSE condition is in effect, the routine 
returns to the caller. 

This sequence of code gives a higher priority to BREAK (that is, if both BREAK 
and PAUSE conditions are pending, the BREAK condition has precedence). 
Note that the GOl'BRK routine needs to clear the KFLAG$ bits after it services 
the BREAK condition .. This is easily done via a call to RESKFL 

The next part of the routine is executed on a PAUSE condition: 

CALL RESKFL iReset the flag 
PUSH DE 

FLUSH LO A ,@KBD iFlush tYPe-ahead 
RST 28H ibuffe r ,,,hi le 
JR Z,FLUSH iignorinl errors 
POP DE 

First the KFLAG$ bits are reset via the call to RESKFL Next, the routine takes 
care of the possibility that type-ahead is active. If it is, the PAUSE key was prob
ably detected by the type-ahead routine and so is slacked in the type-ahead 
buffer also To flush out (remove all stored characters from) the type-ahead 
buffer, @KBD is called until no characters remain (an NZ is returned) 

Now that a PAUSEd slate exists and the type-ahead buffer is cleared, the rou
tine waits for a key input: 

PROMPT PUSH DE 
LD A ,@KE'/ iWai t on Ke,, ent n 
RST 28H 
POP DE 
CP 8121H iAbort on ~ 
JP Z ,GOTBRK 

Software 31 



CP 
JR 

GlilH 
Z,PROMPT 

;Igr,or·e PAUSEi 
; e 1 s e • • • 

The PROMPT routine accepis a BREAK and branches to youi BREAI< han
dling routine It ignores repeated PAUSE (the 60H). Any other character causes 
it to fall through to the following routine which clears the KFLAG$: 

RESKFL PUSH HL ;reset KFLAG$ 
PUSH AF 
LD A,@FLAGS iGet flags Painter 
RST 28H ; i \"1 t 0 re9'iste r IY 

RESKFL1 LD A, ( ! Y+KFLAG$ l iGet the flag 
AND QIFBH iStriP ENTER, 
LD ( IY+KFLAG$ l ,A iPAUSE, BREAK 
PUSH BC 
LD B dG 
LD A,@PAUSE ;Pause a ,,,hi 1 e 
RST 28H 
POP BC 
LD A, ( I Y+KFLAG$ l iChecf, if finger is 
AND 3 ; st i 11 on He}' 
JR NZ ,RESKFL1 iReset it a9'ain 
POP AF iResto re re9'isters 
rv, 111- ·-·· ,J - "; ... 

RET 

The RESKFL subroutine should be called when you first enter your application. 
This is necessary to clear the flag bits that were probably in a "set" condition 
This "primes" the detection. The routine should also be called once a BREAK, 
PAUSE, or ENTER condition is detected and handled (You need to deal with 
the flag bits for only the conditions you are using.) 

Interfacing to @ICNFG 
With the TRSDOS library command SYSGEN, many users may wish to SYS
GEN the RS-232C driver. Before doing that, the RS-232C hardware (UART, 
Baud Rate Generator, etc.) must be initialized .. Simply using the SYSGEN com
mand with the RS-232C driver resident is not enough; some initialization 
routine is necessary .. The @ICNFG (Initialization CoNFiGuration) vector is 
included in TRSDOS to provide a way to invoke a routine to initialize the RS-
232C driver when the system is booted. It also provides a way to initialize the 
hard disk controller at power-up (required by the Radio Shack hard disk 
system). 

The final stages of the booting process loads the configuration file CONFIG/ 
SYS if it exists. After the configuration file is loaded, an initialization subroutine 
CALLs the @ICNFG vector. Thus, any initialization routine that is part of a 
memory configuration can be invoked by chaining into @ICNFG. 

If you need to configure your own routine that requires initialization at power0 up, 
you can chain into @ICNFG. The following procedure illustrates this link .. The 
first thing to do is to move the contents of the @ICNFG vector into your initiali· 
zation routine: 

LD A,@FLAGS iGet flags Pointer 
RST 28H ; in to register IY 
LD A, ( IY+28) iGet opcode 
LD <LINK) ,A 
LD L,(IY+28l iGet address LOW 
LD H,<IY+31ill iGet address HIGH 
LD CLINK+! l ,HL 

This subroutine does this by transferring the 3-byte vector to your routine. You 
then need to relocate your routine to its execution memory address .. Once this 

Software 32 



is done, transfer the relocated initialization entry point to the @ICNFG vector as 
a jump instruction: 

LD 
LD 
LD 
LD 
LD 

HL,INIT 
( IY+29) ,L 
< IY+311l) ,H 
A ,lllC3H 
( IY+28) ,A 

;Get ( relocated) 
;init address 

;set JP instruction 

If you need to invoke the initialization routine at this point, then you can use: 

CALL ROUTINE ;invoke Your routine 

Your initialization routine would be unique to the function it was to perform, but 
an overall design would look like this: 

!NIT CALL ROUTINE iStart of init 
LINK DEFS 3 ;continue on 
ROUTINE 

Your initialization routine 

RET 

After linking in your routine, perform the SYSGEN If you have followed these 
procedures, your routine will be invoked every time you start up TRSD0S. 

Interfacing to @KITSK 
Background tasks can be invoked in one of two ways. For tasks that do not 
require disk 1/0, you can use the RTC (Real Time Clock) interrupt and one of 
the 12 task slots (or other external interrupt). For tasks that require disk 1/0, you 
can use the keyboard task process 

At the beginning of the TRSD0S keyboard driver is a call to @KITSK This 
means that any time that @KBD is called, the @KITSK vector is also called 
(The type-ahead task, however, bypasses this entry so that @KITSK is not 
called from the type-ahead routine . .) Therefore, if you want to interface a back
ground routine that does disk 1/0, you must chain into @KITSK. 

The interfacing procedure to @KITSK is identical to that shown in the section 
"Interfacing to @ICNFG;' except that IY +31 through IY +33 is used to refer
ence the @KITSK vector. You may want to start your background routine with: 

START CALL ROUTINE ; Invofte tasft 
LINK DEFS 3 ;For @KITSK hooft 
ROUTINE EOU $ ;start of the tasft 

Be aware of one major pitfall.. The @KBD routine is invoked from @CMNDI and 
@CMNDR (which is in SYS1/SYS). This invocation is from the @KEYIN call, 
which fetches the next command line after issuing the "TRSD0S Ready" mes
sage. If your background task executes and opens or closes a file (or does any
thing to cause the execution of a system overlay other than SYS 1). then SYS 1 
is overwritten by SYS2 or SYS3 .. When your routine finishes, the @KEYIN han
dler tries to return to what called it-SYS 1, which is no longer resident There
fore, any task chained to @KITSK which causes a resident SYS1 to be over
written must reload SYS1 before returning 

You can use the following code to reload SYS1 if SYS1 was resident prior to 
your task's execution: 

ROUTINE LD A,@FLAGS ;Get flags Pointer 
RST 28H hnto register IY 
LD A,(!Y-1) ;Get resident over-
AND BFH ;Jay and re,,,ove 
LD (OLDS'IS+l) ,A ;the entr,' code 

Software 33 



rest 

EXIT EIJU 
OLDSYS LO 

CP 
RET 
RST 

of your 

$ 

A,0 
83H 
NZ 
28H 

t asf; 

;G~L ulJ uv~rlar a 
;was it SYS!? 
;Return if not; else 
;Get SYS1 Per reg, A 
;(no RET needed) 

Interfacing to the Task Processor 
This section explains how to integrate interrupt tasks into your applications 

One of the hardware interrupts in the TRS-80 is the real time clock (ATC). The 
RTC is synchronized to the AC line frequency and pulses at 60 pulses per sec
ond, or once every 16 .. 67 milliseconds. (Computers operating with 50 Hz AC 
use a 50 pulses per second RTC interrupt In this case, all time relationships 
discussed in this section should be adjusted to the 50 Hz base.) 

A software task processor manages the RTC interrupt in performing back
ground tasks necessary to specific functions of TRSDOS (such as the time 
clock, blinking cursor, and so onJ. I ne task processor a11ows up 10 l<! indIvIauaI 
tasks to be performed on a "time-sharing" basis. 

These tasks are assigned to "task slots" numbered from 0 to 11. Slots 0-7 are 
considered "low priority" tasks ( executing every 266 67 milliseconds). Slots 8-
10 are medium priority tasks (executing every 33 .. 33 milliseconds). Slot 11 is a 
high priority task (executing every 16.66 milliseconds SYSTEM (FAST) or 33.33 
milliseconds SYSTEM (SLOW)). Task slots 3, 7, 9, and 10 are reserved by the 
system for the ALIVE, TRACE, SPOOL, and TYPE-AHEAD functions, 
respectively 

TRSDOS maintains a Task Control Block Vector Table (TCBVT) which contains 
12 vectors, one for each of the 12 task slots. TRSDOS contains five supervisor 
calls that manage the task vectors. The five SVCs and their functions are: 

@CKTSK 
@ADTSK 
@RMTSK 
@KLTSK 
@RPTSK 

Checks to see whether a task slot is unused or active 
Adds a task to the TCBVT 
Removes a task from the TCBVT 
Removes the currently executing task 
Replaces the TCB address for the current task 

The TRSDOS Task Control Block Vector Table contains vector pointers. Each 
TCBVT vector points to an address in memory, which in turn contains the 
address of the task .. Thus, the tasks themselves are indirectly addressed. 

When you are programming a task to be called by the task processor, the entry 
point of the routine needs to be stored in memory. If you make this storage loca
tion the beginning of a Task Control Block (TCB), the reason for indirect vector
ing of interrupt tasks will become more clear Consider an example TCB: 

MYTCB DEFW MYTASK 
COUNTER DEFB 15 
TEMPY DEFS 1 
MYTASK RET 

This is a useless task, since the only thing it does is return from the interrupt. 
However, note that a TCB location has been defined as "MYTCB" and that this 
location contains the address of the task A few more data bytes immediately 
following the task address storage have also been defined 

Upon entry to a service routine, in.dex register IX contains the address of the 
TCB. You can therefore address any TCB data using index instructions. For 
example, you could use the instruction "DEC (IX+2)" to decrement the value 
contained in COUNTER in the above routine. 

Software34 



Here is the routine expanded slightly: 

MYTCB DEFW MYTASK 
COUNTER DEFB 15 
TEMPY DEFB 0 
MYTASK DEC ( Il<+2) 

RET NZ 
LD (J:<+2),15 
RET 

This version makes use of the counter Each time the task executes, the counter 
is decremented, When the count reaches zero, the counter is restored to its 
original value, 

In order to be executed, all tasks must be added to the TCBVT The @ADTSK 
supervisor call does this For the above routine, assume the task slot chosen is 
low-priority slot 2, You can ascertain that slot 2 is available for use by using the 
@CKTSK SVC as follows: 

LD 
LD 
RST 
JP 

C,2 
A,28 
28H 
NZ, !NUSE 

;Reference slat 2 
;set far @CKTSK SVC 
;An 11 NZ 11 indication 
;sars that the slat is 
;being used. 

Once you determine that the slot is available {that is, not being used by some 
other task), you can add your task routine. The following code adds this task to 
theTCBVT: 

LD DE ,MYTCB 
LD C ,2 
LD A ,29 
RST 28H 

;Point to the TCB 
;Reference slat 2 
;set far @ADTSK SVC 
;issue the s,1c 

The above program lines point register DE to the TCB, load the task slot num
ber into register C, and then issue the @ADTSK supervisor call. If you want this 
task to run regardless of what is in memory, you can place it in high memory {of 
bank 0) and protect it by moving HIGH$ below it via the @HIGH$ supervisor 
call 

Once a task has been activated, it is sometimes necessary to deactivate it You 
can do this in two ways, The most common way is to use the @AMTSK super
visor call: 

LD 

LD 
RST 

C,2 

A,30 
28H 

;oesidnate the task 
;slot 
;set for @RMTSK SVC 
; Issue the S,JC 

You identify the task slot to remove by placing a value in register C, and then 
you issue the supervisor call. 

You can use another method if you want to remove the task while it is being 
executed, Examine the routine modified as follows: 

MYTCB DEFW MYTASK 
COUNTER DEFB 10 
TEMPY DEFB II) 

MYTASK DEC (!X+2l 
RET NZ 
LD A,32 ;set for @KLTSK St,JC 
RST 28H ;issue the St)C 

The @KLTSK supervisor call removes the currently executing task from the 
TCBVT, The system does not return to your routine, but continues as if you had 
executed a AET instruction For this reason, the @KLTSK SVC should be the 
last instruction you want executed, In this example, MYTASK decrements the 
counter by one on each entry to the task, When the counter reaches zero, the 
task is removed from slot 2, 

Software35 



The last task processor supervisor call is @RPTSK. The @RPTSK function 
updates the TCB storage vector (the vector address in your Task Control Block) 
to be the address immediately following the @RPTSK SVC instruction. As with 
@KLTSK, the system does not return to your service routine after the SVC is 
made, but continues on with the task processor. The following example illus
trates how @RPTSK can be used in a program: 

@ADTSK 
@RPTSK 
@RMTSK 
@E}( IT 
@t,JDCTL 
BEGIN 

ORG 8111111121H 
EQU 28 
EQU 31 
EQU 3111 
EQU 22 
EQU 15 
LD DE,TCB 
LD C ,Ill 
LD A,@ADTSK 
RST 28H 
LD A ,@E>( IT 
RST 28H 

TCB DEFW TASK 
COUNTER DEFB 15 
TASKA LD A,@RPTSK 

RST 28H 
TASK LD BC,11127CH 

LD HL, 1111114FH 
LD A ,@t.'DCTL 
RST 28H 
DEC ( !){+2) 
RET NZ 
LO < I}{+2) ,15 
LD A ,@RPTSK 
RST 28H 

TASKB LD BC,11122DH 
LD HL ,1111114FH 
LD A ,@t,JDCTL 
RST ZBH 
DEC ( !){+2) 

RET NZ 
LD ( !){+2) ,15 
JR TASKA 
END BEGIN 

iPoint to TCB 
iand add the 
ito slot Ill 

iExit to TRSDOS 

;Replace current 
itasf: 1,!ith TASKA 
iPut a character 
iat Row 121, Col, 78 

;oecrer11ent the counter 
;and return if not 
;e><Pired; else reset 
;Replace the Previous 
itasK with TASKB 
iPut a character 
iat Ro,. Ill, Col, 78 

This task routine contains no method of relocating it to protected RAM The 
statements starting at tt1e label BEGIN add the task to TCBVT slot (i) and return 
to TRSDOS Ready. The task contains a four-second down counter and a rou
tine to put a character in video RAM (80th character of Row 0). At four-second 
intervals, the character toggles between 'I' and ' - '. This is done by using the 
@RPTSK SVC to toggle the execution of two separate routines which perform 
the character display. 

TRSDOS uses bank-switched memory. In order to properly control and man
age this additional memory, certain restrictions are placed on tasks. All tasks 
must be placed either in low memory (addresses X'(i)(i)(i)(i)' through X'7FFF') or 
in bank zero of high memory (addresses X'8(i)(i)(i)' through X'FFFF') The task 
processor always enables bank zero when performing background tasks. The 
assembly language programmer must ensure that tasks are placed in the cor
rect memory area. 

Interfacing RAM Banks 1 and 2 
The proper use of the RAM bank transfer techniques described here requires a 
high degree of skill in assembly language programming. This section on bank 
switching is intended for the professional 

Software 36 



The TRS-80 Model 4 can optionally support a second set of 64K RAM, bringing 
the total RAM to 128K TRSD0S designates this extra 64K RAM as two banks 
of 32K RAM each, which are banks 1 and 2 of bank-switched RAM, The upper 
32K of standard RAM is designated bank 0 At any one time, only one of the 
banks is resident The resident bank is always addressed at X'8000' through 
X'FFFF.' When a bank transfer is performed, the specified bank becomes 
addressable and the previous bank is no longer available, Since memory 
refresh is performed on all banks at all times, nothing in the previously resident 
bank is altered during whatever time it is not addressable (that is, not resident), 

You can access this additional RAM by means of the @BANK supervisor call 
(SVC 102) .. When you power up your computer or press reset, TRSD0S looks 
to see which banks of RAM are installed in your machine .. TRSD0S maintains 
a bit map in one byte of storage, with each bit representing one of the banks of 
RAM This byte is called "Bank Available RAM" (BAR), and its information is set 
when you boot TRSD0S Bit 0 corresponds to bank 0, bit 1 corresponds to 
bank 1, and so on up to bit 7 From a hardware standpoint, the Model 4 has a 
maximum of three banks .. You have either bank 0 only (a 64K machine), or 
banks 0-2 (a 128K machine) 

Another bit map is used to indicate whether a bank is reserved or available for 
use. This byte is called the "Bank Used RAM" (BUR) Again, bit 0 corresponds 
to bank 0, bit 1 to bank 1, and so on. TRSD0S design supports the use of banks 
1 and 2 primarily for data storage (for example, a spool buffer, Memdisk, etc.) 
The management of any memory space within a particular bank of RAM 
(excluding bank 0) is the responsibility of the application program "reserving" a 
particular bank 

TRSD0S requires that any device driver or filter that is relocated to high mem
ory (X'8000' through X'FFFF') reside in bank 0 The TRSD0S device handler 
always invokes bank 0 upon execution of any byte 1/0 service request (@PUT, 
@GET, @CTL, as well as other byte 1/0 SVCs that use @PUT/@GET/@CTL). 
This ensures that any filter or driver attached to the device in question will be 
available. If a RAM bank other than 0 was resident, it is restored upon return 
from the device handler This ensures that device 1/0 is never impacted by bank 
switching 

TRSD0S also requires that all interrupt tasks reside in bank 0 or low memory 
(X'0000' through X'7FFF') The interrupt task processor always enables bank 0 
and restores whatever bank was previously resident An interrupt task may per
form a bank transfer from 0 to another bank provided the necessary linkage 
and stack area is used. This is discussed in more detail later, 

All bank transfer requests must be performed using the @BANK SVC, This 
SVC provides four functions, three of which are interrogatory and one of which 
performs the actual bank switching 

As mentioned previously, the contents of banks other than 0 are managed by 
the application, not by TRSD0S. Therefore, the application needs a way of find
ing out if any given bank is available. For example, if an application wants to 
reserve use of bank 1, it must first check to see if bank 1 is free to use. This is 
done by using function 2 as follows: 

LD C,1 iSpecif>• banf, 1 
LD B ,2 iChecf, BUR if bard, in use 
LD A,@BANK iSet @BANK SVC 11021 
RST 28H 
JR NZ,INUSE iN2 if bank already in use 

Note that the return condition (NZ or Z) shows whether or not you can use the 
specified bank (it may not even be installed) 

If the specified bank is available, you then need to reserve it. Do this by using 
function 3 as follows: 

LD 
LD 

C ,1 

B,3 

Software37 

;specif>• bard, 1 
;set BUR to show 11 in use 11 



LO 
RST 
JR 

A,@BANK 
28H 
NZ;EP.ROR 

iSet @BANK SVC (112!2) 

You must check for an error by examining the Z flag. In general (discounting a 
system error), an NZ condition returned means that the specified bank is 
already in use. If you had performed a function 2 (testing to see if the bank was 
available) and got a not-in-use indication, but got an NZ condition on function 
3, then the @BANK SVC routine has been altered and is probably unusable 

When an application no longer requires a memory bank, it can return the bank 
to a "free" state by using function 1 as follows: 

LO C,1 iSPecifY bani\ 1 
LO B ,1 iSet BUR to show free 
LO A,@BANK iSet @BANK SVC (112!2> 
RST 28H 

No error condition is checked, as none is returned by TRSDOS. If you should 
mistakenly use function 1 with a bank that is nonexistent, an error is returned if 
you try to invoke the nonexistent bank. 

To find out which bank is resident at any time, use function 4 as follows: 

LO 
LO 
RST 

B,4 
A,@BANK 
28H 

iWhich bank is resident? 
iSet @BANK SVC (112!2) 

The current bank number is returned in register A. 

To exchange the current bank with the specified bank, use function 0. Since a 
memory transfer takes place in the address range X'8000' through X'FFFF,' 
the transfer cannot proceed correctly if the stack pointer (SP) contains a value 
that places the stack in that range. @BANK inhibits function 0 and returns an 
SVC error if the stack pointer violates this condition 

A bank can be used purely as a data storage buffer. The application's routines 
for invoking and indexing the bank switching probably reside in the user range 
X'30111111' through X'7FFF.' As an example, the following code invokes a previ
ously tested and reserved bank (via functions 2 and 3), accesses the buffer, 
and then restores the previous bank: 

LO C,1 iSPecify bank 1 
LD B ,12! rnrinl UP bank 
LO A,@BANK iSet @BANK SVC (112!2) 
RST 28H 
JR NZ,ERROR iError trap 
PUSH BC iSaue old bank data 

your code to access the buffer relion 

POP 
LO 
RST 
JR 

BC 
A,@BANK 
28H 
NZ,ERROR 

iRecouer old bank data 
iSet @BANK SVC (112!2) 

;Error trap 

Note that the @BANK function 111 conveniently returns a zero in register B to 
effect a function 111 later, as well as provides the old bank number in register C 
This means that you only have to save register pair BC, pop it when you want 
to restore the previous bank, and then issue the @BANK SVC. 

Suppose you want to transfer to another bank from a routine that is executing 
in high memory. (Recall that the only limitation is that the stack must not be in 
high memory.) The @BANK SVC function 0 provides a technique for automat
ically transferring to an address in the new bank This technique is called the 
transfer function. It relies on the assumption that since you are managing the 
entire 32K bank 1 or 2, your application should know exactly where it needs to 
transfer (that is, where the application originally placed the code to execute). 

Software 38 



The code to perform a bank transfer is similar to the above example. Register 
pair HL is loaded with the transfer address. Register C, which contains the num
ber of the bank to invoke, must have its high order bit (bit 7) set After the spec
ified bank is enabled, control is passed to the transfer address that is in HL 
Upon entry to your routine in the new bank (referred to here as "PROGB"), reg
ister HL will contain the old return address so that PROGB will know where to 
return transfer. Register C will also contain the old bank number with bit 7 set 
and register B will contain a zero.. This register set-up provides for an easy 
return to the routine in the old bank that invoked the bank transfer An illustra
tion of the transfer code follows: 

LD C ,1 iSPecifi• bani\ 1 
LD B,0 i Bring UP banf\ 0 
LD HL , ( TRAADR) iSet the transfer 

iaddress 
SET 7,C iand denote a 

;transfer 
LD A,@BANK iSet @BANK SIJC ( 102) 
RST ZBH 

RETADR JR NZ,ERROR 

Control is returned to "RETADR" under either of two conditions If there was an 
error in executing the bank transfer (for example, if an invalid bank number was 
specified or the stack pointer is in high memory). the returned condition is NZ 
If the transfer took place and PROGB transferred back, the returned condition 
is Z. Thus, the Z flag shows whether or not there was a problem with the 
transfer. 

If PROGB needs to provide a return code, it must be done by using register pair 
DE, IX, or IY, as registers AF. BC, and HL are used to perform the transfer. (Or, 
some other technique can be used, such as altering the return transfer address 
to a known error trapping routine) 

PROGB should contain code that is similar to that shown earlier. For example, 
PROGB could be: 

PROGB PUSH 
PUSH 

BC 
HL 

Your PROGB routines 

POP HL 

POP BC 

LO A, 102 
RST 28H 
JR NZ,ERROR 

iSave old bani\ data 
iSa11e the RET 
iaddress 

iRecove r transfer 
;address 
iGet ban I\ transfer 
id at a 
iSet @BANK S\JC 

;Error t ra P 

PROGB saves the bank data (register BC), Don't forget that a transfer was 
effected and register C has bit 7 already set when PROGB is entered. PROGB 
also saves the address it needs to transfer back (which is in HL) It then per
forms whatever routines it has been coded for, recovers the transfer data, and 
issues the bank transfer request. As explained earlier, an NZ return condition 
from the @BANK SVC indicates that the bank transfer was not performed. You 
should verify that your application has not violated the integrity of the stack 
where the transfer data was stored. 

Never place disk drivers, device drivers, device filters, or interrupt service rou
tines in banks other than bank 0. It is possible to segment one of the above 
modules and place segments in bank 1 or 2, provided the segment containing 
the primary entry is placed in bank 0. You can transfer between segments by 
using the bank transfer techniques discussed above. 

Soltware39 



Device Driver and Filter Templates 

Device independence has its roots in "byte I/ff Byte 1/0 is any 1/0 passed 
through a device channel one byte at a time, 

Three primitive routines are available at the assembly language level for byte 
1/0, These byte 1/0 primitives can be used to build larger routines. The three 
primitives are the TRSDOS supervisor calls @GET, @PUT, and @CTL @GET 
is used to input a byte from a device or file. @PUT is used to output a byte to a 
device or file. @CTL is used to communicate with the driver routine servicing 
the device or file 

Other supervisor calls perform byte 1/0, such as @KBD (scan the keyboard and 
return the key code if a key is down), @DSP (display a character on the video 
screen), and @PRT (output a character to the line printer). These functions 
operate by first loading register pair DE with a pointer to a specific Device Con
trol Block (DCB) assigned for use by the device, then issuing a @GET or 
@PUT SVC for input or output requests 

When TRSDOS passes control over to the device driver routine, the Z-80 flag 
conditions are unique for each different primitive This enables the driver to 
establish which primitive was used to access the routine, so it can turn over the 
1/0 request to the proper driver or filter subroutine accoraing 10 ihe 1ype ui 
request- input, output, or control 

The following table shows the FLAG register conditions upon entry to a driver 
or filter: 

C,NZ = @GET primitive 
Z,NC = @PUT primitive 
NZ,NC =@CTL primitive 

Register B contains the 1/0 direction code: 1 = @GET, 2 =@PUT, 4 =@CTL 
Register C contains the character code that was passed in the @PUT or @CTL 
supervisor call. Register IX points to the TYPE byte (DCB+ 0) of the Device 
Control Block Registers BC, DE, HL, and IX have been saved on the stack and 
are available for use. Register AF is not saved; if you want it preserved, your 
program must do so, 

Your driver must start with a standard front-end header (see "Memory 
Header"): 

BEGIN JR START iGo to actual code 
;beginning 

DEFW MODEND-1 ; Last bi· t e used by 
; 1110 du 1 e 

DEFB 7 iLensth of na1,1e 
DEFM 'MODNAME' ;Na1,1e 

MODDCB DEFW $-$ iDCB Pt r. for this 
intodule 

DEFW Q) iReserved by TRSDOS 

At the start of the actual module code, test the condition of the F register flags 
for @GET, @PUT, and @CTL: 

START EQU $ 

Actual Module code start 
JR C,WASGET iGo if @GET request 
JR Z ,WAS PUT iGo if @PUT re"!ues t 

iWas @CTL request 

At the label START, a test is made on the carry flag, If the carry was set, then 
the disk primitive must have been an input request (@GET). An input request 
could be directed to a part of the driver which only handles input from the 
device 

Software 40 



If the request was not from the @GET primitive, the carry will not be set The 
next test checks to see if the zero flag is set The zero condition is preset when 
a @PUT primitive was the initial request. The jump to WASPUT can go to a part 
of the driver that deals specifically with output to the device 

If neither the zero nor carry flags are set, the routine falls through to the next 
instruction (not shown), which would begin the part of the driver that handles 
@CTL calls. For example, you may want to have an RS-232C driver handle a 
BREAK by issuing a @CTL call so that the RS-232C driver emits a true modem 
break, but a CONTROL C would @PUT a X'03.'. 

Some drivers are written to assume that @CTL requests are to be handled 
exactly like @PUT requests. This is entirely up to the author and the function of 
the driver. 

Note that when a device is routed to a disk file, TRSDOS ignores @CTL 
requests. That is, the @CTL codes are not written to the disk file. 

On @GET requests, the character input should be placed in the accumulator. 
On output requests (either @PUT or @CTL), the character is obtained from 
register C. It is important for drivers and filters to observe return codes. Specif
ically, if the request is @GET and no byte is available, the driver returns an NZ 
condition and the accumulator contains a zero (that is, OR 1 : LD A,0 : RET). If 
a by1e is available, the by1e is placed in the accumulator and the Z flag is set 
(that is, LD A.CHAR : CP A : RET). If there is an input error, the error code is 
returned in the accumulator and the Z flag is reset (that is, LD A,ERRNUM: OR 
A : RET) .. On output requests, the accumulator will contain the byte output with 
the Z flag set if no error occurred. In the case of an output error, the accumulator 
must be loaded with the error code and the Z flag reset as shown above. 

A filter module is inserted between the DCB and driver routine (or between the 
DCB and the current filter when it is applied to a DCB already filtered). The 
insertion is performed by the TRSDOS FILTER command once the filter mod
ule is resident and attached to a phantom DCB. The usual linkage for a filter is 
to access the chained module by calling the @CHNIO supervisor call with spe
cific linkage data in registers IX and BC. Register IX is loaded with the filter's 
DCB pointer obtained from the memory header MODDCB pointer. Register B 
must contain the 1/0 direction code (1 =@GET, 2=@PUT, 4=@CTL). This 
code is already in register B when the filter is entered .. You can either keep reg
ister B undisturbed or load it with the proper direction code Also, output 
requests expect the output byte to be in register C. 

The DCB pointer obtained from MOD DCB is passed in register DE by the SET 
command and is loaded into MODDCB by your filter initialization routine The 
initialization routine needs to relocate the filter to high memory and attach itself 
to the DCB assigned by the SET command. If the initialization front end had 
transferred the DCB pointer from DE to IX, then the following code could be 
used to establish the TYPE byte and vector for the filter: 

LO ( I>() , a 7H i In it DCB t ,, Pe to 
LO (I>(+l),E iFILTER, G/P/C l/0, 
LO ( !){+2) ,D iB, stuff vector 

A filter module can operate on input, output, control, or any combination based 
on the author's design. The memory header provides a region for user data 
storage conveniently indexed by the module. 

An illustration of a filter follows. The purpose of this filter is to add a linefeed on 
output whenever a carriage return is to be sent Although the filter requires no 
data storage, the technique for accessing data storage is shown 

Software 41 



BEGIN 

MODDCB 

CR 
LF 
DATA$ 
DATA! 

DATA2 

START 

FLTPUT 

R)(Qll 

GOTPUT 
RX02 

Rl{Ql3 

FLTEND 

RELTAB 
TABLEN 

START 
FLTEND-1 
8 
'SAMPLE' 

QI 
QI 

Branch ta start 
Last bvte ltsed 
N~11;1e length 
Na1ne 
Linlt ta DCB 
Rese r•ied 

JR 
DEFW 
DEFB 
DEFM 
DEFW 
DEFW 
Data 
EQU 
EQU 
EQU 
EQU 
DEFB 
EQU 
DEFB 

st □ rale area for ,our filter 
QIDH 
QIAH 
$ 

$-DATA$ 
QI 
$-DATA$ 
QI 

Start of filter 

;Data st □ rale 

;oata stora9e 

JR Z,GOTPUT ;Ga if @PUT 
@GET and @CTL re9uests are chained ta 
the next module attached ta the device, 
This is acc □ mPlished by fallinl thr □ ulh 
ta the @CHNIO call, Nate that the sample 
filter does not affect the B re1ister, 
so the filter does not have ta load it 
1,v1th the ct1rect1on code. 
PUSH Iv ;save ,our data 

;pointer 
LO 
EQU 
LO 
RST 
POP 
RET 

I)-( , ( MODDCB) 
$-2 
A,@CHNIO 
28H 
I>{ 

Filter code 
LO Il<,PFDATA$ 
EQU $-2 
LO A,C 

CP 
JR 
CALL 
EQU 
RET 
LO 
JR 
EQU 

CR 
NZ,FLTPUT 
FLTPUT 
$-2 
NZ 
C,LF 
FLTPUT 
$ 

Relocation table 

iGrab the DCB vector 
;and chain ta it 

;Base relister is 
;used to index data 
iGet character ta 
;test 
iif not CR, PUt it 

;else PLtt it 

;BacH on error 
iAdd linefeed 

DEFW Rl<Qll ,Rl<Ql2,RXQl3 
EQU $-RELTAB/2 

The relocation table, RELTAB, would be used by the filter initialization relocation 
routine 

@CTL Interfacing to Device Drivers 

This section discusses the @CTL functions supported by the system device 
drivers. To invoke a @CTL function, point register pair DE to the Device Control 
Block (DCB), load the function code into register C, and issue the @CTL super
visor call. You can locate the DCB address by either 1) using the @GTDCB 
SVC, or 2) using the @OPEN SVC to open a File Control Block containing the 
device specification and using the FCB address. See the @CTL supervisor call 
for a list of the function codes and their meanings. 

Software 42 



The @CTL functions are listed below for each driver. 

Keyboard Driver (resident driver assigned to 'Kl) 

A function value of X'03' clears the type-ahead buffer. This serves the same 
purpose as repeated calls to @KBD until no character is available 

A function value of X'FF' is reserved for system use. 

All other function values are treated as @GET requests 

The module name assigned to this driver is "$Kl" 

Video Driver (resident driver assigned to 'DO) 

All @CTL requests are treated as if they were @PUT requests 

The module name assigned to this driver is "$DO': 

Printer Driver (resident driver assigned to *PR) 

The printer driver is transparent to all code values when requested by the 
@PUT SVC. That means that all values from X'00' through X'FF' (0-255) can 
be sent to the printer. If the FORMS filter is attached to the *PR device, then 
various codes are trapped and used by the filter according to parameters spec
ified with the FORMS library command, as follows: 

X'0D' - Generates a c;arriage return and optionally a linefeed (ADDLF) 
Generates form feeds as required 

X'0A' - Treated the same way as X'0D: 
X'0C' - Generates form feeds (via repeated line feeds if soft form feed). 

(FFHARD = OFF) 
X'09' -Advances to next tab column. 
X'06' -Sets top-of-form by resetting the internal line counter to zero 

Other character codes may be altered if the user translation option of the 
FORMS command (XLATE) is set 

The printer driver accepts a function value of X'00' via the @CTL request to 
return the printer status, If the printer is available, the Z flag will be set and reg
ister A will contain X'30: If the Z flag is reset, register A will contain the four high
order bits of the parallel printer port (bits 4-7) 

The module name assigned to the printer driver is "$PR'.: The module name of 
the FORMS filter is "$FF''. 

COM Driver (non-resident driver for the RS-232C) 

This driver handles the interfacing between the RS-232C hardware and byte 
1/0 (usually the *CL device) 

A @CTL function value of X'00' returns an image of the RS-232 status register 
in the accumulator. The Z flag will be set if the RS-232 is available for "sending" 
(that is, if the transmit holding register is empty and the flag conditions match 
as specified by SETCOM), 

A function value of X'01' transmits a "modem break" until the next character is 
@PUT to the driver 

A function value of X'02' re-initializes the UART to the values last established 
bySETCOM 

A function value of X'04' enables or disables the WAKEUP feature. 

All other function values are ignored and the driver returns with register A con
taining a zero value and the Z flag set 

The WAKEUP feature is useful for application software specializing in com
munications The RS-232 hardware can generate a machine interrupt under 
any of three conditions: when the transmit holding register is empty, when a 
received character is available, or when an error condition has been detected 
(framing error, parity error, and so on), The COM driver makes use of the 

Software43 



"received character available" interrupt to take control when a fully formed char
acter is in the holding register. The COM driver services the interrupt by reading 
the character and storing it in a one-character buffer COM then normally 
returns from the interrupt 

An application can request that, instead of returning, control be passed to the 
application for immediate attention. Note that this action would occur during 
interrupt handling, and any processing by the application must be kept to a min· 
imum before control is returned to COM via a RET instruction 

If you use a @CTL function value of X'©4; then register IY must contain the 
address of the handling routine in your application. Upon return from the @CTL 
request, register IY contains the address of the previous WAKEUP vector This 
should be restored when your application is finished with the WAKEUP feature. 

When control is passed to your WAKEUP vector upon detection of a "receive 
character available" interrupt, certain information is immediately available Reg
ister A contains an image of the UART status register. The Z flag is set if a valid 
character is actually available The character, if any, is in the C register 

Since system overhead takes a small amount of time in the @GET supervisor 
call, you may need to @GET the character via standard device interfacing. This 
ensures that any filtering or linking in the ·cL device chain will be honored. If, 
on the other hand, your application is attempting to transfer data at a very high 
rate (HbllHb oaua or higher), you rmty nt:eci iu Uyµdti~ llit::: ~G[T 8VC and u.s& 
the character immediately available in the C register. Note that this procedure 
bypasses the normal device chain (device routing and linking) 

The module name of the COM driver is "$CL:'. 

Software44 



8/Using the Supervisor Calls 

Calling Procedure 

Supervisor Calls (SVCs) are operating system routines that are available to 
assembly language programs. These routines alter certain system functions 
and conditions, provide file access, and perform various computations. They 
also perform 1/0 to the keyboard, video display, and printer 

Each SVC has a number which you specify to invoke it These numbers range 
from 0 to 104 

In addition, under Version 6.2, you can write your own operating system rou
tines using the numbers 124 through 127 to install your own SVC's See Ap
pendix E, "Programmable SVCs" for more information 

To call a TRSDOS SVC: 

1. Load the SVC Ill.Imber for the desired SVC into register A Also load any 
other registers which are needed by the SVC, as detailed under Supervisor 
Calls. 

2. Execute a RST 28H instruction 

Note: If the SVC number supplied in register A is invalid, the system prints the 
message "System Error xx·; where xx is usually 2B. It then returns you to 
TRSDOS Ready (not to the program that made the invalid SVC call) 

The alternate register set (AF; BC; DE; HI.'.) is not used by the operating system. 

Program Entry and Return Conditions 
When a program executed from the @CMNDI SVC is entered, the system 
return address is placed on the top of the stack. Register HL will point to the first 
non-blank character following the command name. Register BC will point to the 
first byte of the command line buffer. 

Three methods of return from a program back to the system are available: the 
@ABORT SVC, the @EXIT SVC, and the RET instruction. For application pro
grams and utilities, the normal return method is the @EXIT SVC. If no error con
dition is to be passed back, the HL register pair must contain a zero value. Any 
non-zero value in HL causes an active JCL to abort. 

The @ABORT SVC can be used as an error return back to the system; it auto
matically aborts any active JCL processing. This is done by loading the value 
X'FFFF' into the HL register pair and internally executing an @EXIT SVC 

If stack integrity is maintained, a RET instruction can be used since the system 
return address is put on the stack by @CMNDL This allows a return if the pro
gram was called with @CMNDR 

Most of the SVCs in TRSDOS Version 6 set the Z flag when the operation spec
ified was successful. When an operation fails or encounters an error, the Z flag 
is reset (also known as NZ flag set) and a TRSDOS error code is placed in the 
A register. The remaining SVCs use the ZINZ flag in differing ways, so you 
should refer to the description of the SVCs you are using to determine the exit 
conditions. 

Software45 



Supervisor Calls 

The TRSDOS Supervisor Calls are: 

Keyboard SVCS 

@CKBRKC 
@KBD 
(ci'KEY 
@KEVIN 

Printer and Video SVCs 

@CLS 
@DSP 
@DSPLY 
@LOGER 
@LOGOT 
@MSG 
0'PRT 
@PRINT 
(a'VDCTL 

Disk SVCs 

@DCINIT 
@DCRES 
@DCSTAT 
@RDSEC 
@RDSSC 
@RSLCT 
@ASTOR 
@SEEK 
@SLCT 
@STEPI 
@VRSEC 
@WRSEC 
@WRSSC 
@WRTRK 

System Control SVCs 

@ABORT 
@BREAK 
@CMNDI 
@CMNDR 
@EXIT 
@FLAGS 
@HIGH$ 
@IPL 
@LOAD 
@RUN 

Special Purpose Disk SVCs 

@DIRRD 
@DIRWR 
@GTDCT 
@HDFMT 
@RDHDR 
@RDTRK 

Software46 

Byte 1/0 SVCs 

@CTL 
@GET 
@PUT 

File Control SVCs 

@CLOSE 
@FEXT 
@FNAME 
@FSPEC 
@INIT 
@REMOV 
@OPEN 
@RENAM 

Disk File Handler SVCS 

@BKSP 
@CKEOF 
@LOC 
@LOF 
@PEOF 
@POSN 
@READ 
@REW 
@RREAD 
@AWAIT 
@SEEKSC 
@SKIP 
@VER 
@WEOF 
@WRITE 

TRSDOS Task Control SVCS 

@ADTSK 
@CKTSK 
@KLTSK 
@RMTSK 
@RPTSK 

Special Overlay SVCs 

@CKDRV 
@DEBUG 
@DODIR 
@ERROR 
@PARAM 
@RAMDIR 



Miscellaneous SVCs 

@BANK 
@DATE 
@DECHEX 
@DIVB 
@DIV16 
@HEXDEC 
@HEXB 
@HEX16 
@MULB 
@MUL16 
@PAUSE 
@SOUND 
@TIME 
@WHERE 

Special Purpose SVCS 

@CHNIO 
@GTDCB 
@GTMOD 

See the pages that follow for a detailed description of each supervisor calL 

Software 47 



@ABORT 
Abort Program 

SVC Number 21 

Loads HL with an X'FFFF' error code and exits through the @EXIT supervisor 
call. Any active JCL processing is aborted. 

Entry Conditions: 

A=21 (X'15') 

General: 

This SVC does not return. 

Example: 

See the example for @EXIT in Sample Program B, lines 206-207. 

Software48 



@ADTSK SVC Number 29 

Add an Interrupt level Task 
Adds an interrupt level task to the real time clock task table The task slot num
ber can be 0-11; however, some slots are already assigned to certain functions 
in TRSDOS. Slot assignments 0-7 are low priority tasks executing every 266. 67 
milliseconds. Slots 8-10 are medium priority tasks executing every 33.33 milli
seconds. Slot 11 is a high priority task, executing every 16.66 milliseconds High 
Speed or 33 33 milliseconds Low Speed. The system uses task slots 3, 7, 9, 
and 10 for the ALIVE, TRACE, SPOOL, and TYPE-AHEAD functions, 
respectively 

It is a good practice to remove an existing task (using the @RMTSK or 
@KLTSK SVC) before installing a new task in the same task slot 

Entry Conditions: 
A = 29 (X' 10') 
DE= pointer to Task Control Block (TCB) 
C = task slot assignment (0-11) 

Exit Conditions: 

Success always. 
HL and AF are altered by this SVC. 

The Task Control Block, or TCB, is a 2-byte block of RAM which contains the 
address of the task driver entry point. If your task is prefixed with the memory 
header described earlier under "Device Access;· then the TCB can be stored in 
the memory header data storage area. If the task is not a driver or filter, the TCB 
can be stored in the memory header location MODDCB. Upon entry to your 
task routine, the IX register contains the TCB address 

Example: 

See Sample Program F, lines 109-120 

Software49 



@BANK 
Memory Bank Use 

SVC Number 102 

Controls 32K memory bank operation. The top half of the main 64K block is 
bank 0, and the alternate 64K block is divided into banks 1 and 2. The system 
maintains two locations to perform bank management These areas are known 
as "bank available RAM" (BAR) and "bank in use RAM" (BUR). 

If the Stack Pointer is not X'?FFE' or lower, the SVC aborts witt1 an Error 43 only 
if B=0 

Entry Conditions: 
A= 102 (X'66') 
B selects one of the following functions: 

If B = 0, the specified bank is selected and is made addressable 
The 32K bank starts at X'8000' and ends at X'FFFF'. 

C = bank number to be selected (0-2) 
If bit 7 is set, then execution will resume in the newly loaded 
bank at the address specified. 

HL = address to start execution in the new bank 
!f B - 1, reset BUR 2nd sh01H the bank not !n use. 

C = bank number to be selected (0-2) 
If B = 2, test BUR if bank is in use. 

C = bank number to be selected (0-2) 
If B = 3, set BUR to show bank in use 

C = bank number to be selected (0-2) 
If B = 4, return number of bank currently selected. 

Exit Conditions: 

If B=0: 
Success, Z flag set 

C = the bank number that was replaced. If bit 7 was set in register 
C on entry, it is also set on exit 

HL = SVC return address. By keeping the contents of C and HL, 
you can later return to the instruction following the first 
@BANK SVC. See "Interfacing RAM Banks 1 and 2" for more 
information. 

Failure, NZ flag set. Bank not present or parameter error 
A = error number 

lfB=1: 
Success, Z flag set Bank available for use 
Failure, NZ flag set Bank not present. 

If B=2: 
Success always 

lfB=3: 

If Z flag is set, then the bank is available for use. 
If NZ flag is set, then test register A: 

If A J X'2B; then the bank is either in use or it does not exist on 
your machine. Banks 1 and 2 produce this error on a 64K 
machine. 

If A= X'2B; then an entry parameter is out of range. 

Success, Z flag set Bank is now reserved for your use 
Failure, NZ flag set Test register A: 

If A J X'2B; then the bank is already in use or does not exist Banks 
1 and 2 produce this error on a 64K machine. 

If A= X'2B; then an entry parameter is out of range. 

Software 50 



If B=4: 
Success always. 

A= number of the bank which is currently resident 

General: 
AF is altered for all functions. 
BC is altered if the SVC is successful 

Example: 
See the section "Interfacing RAM Banks 1 and 2'.' 

Software 51 



@BKSP SVC Number 61 

Backspace One Logical Record 
Performs a backspace of one logical record 

Entry Conditions: 
A = 61 (X'3D') 
DE=pointer to FCB of the file to backspace 

Exit Conditions: 
If the Z flag is set or if A= X'1 C' or X'1 o; then the operation was successfuL 

The LOC pointer to the file was backspaced one record Otherwise, 
A= error number 
If A= X'1 C' is returned, the file pointer is positioned at the end of the file. 
Any Appending operations would be performed here. 
If A= X'1D' is returned, the file pointer is positioned beyond the end of 
the file 

General: 
Only AF is altered by this SVC 
If the LOC pointer was at record © when the call was executed, the results 

are indeterminate 

Example: 
See the example for @LOC in Sample Program C, lines 305-311 

Software 52 



@BREAK 
Set Break Vector 

SVC Number 103 

Sets a user or system break vector. The BREAK vector is an abort mechanism; 
there is no return. 

The BREAK vector executes whenever the following conditions occur at the 
same time: 1) the Program Counter is greater than X'2400; 2) the BREAK key 
is pressed, and 3) a real time clock interrupt which executes 30 times per sec
ond occurs. 

After executing this SVC, you must reset bit 4 of SFLAG$. The BREAK flag in 
KFLAG$ (bit 0) requires the setting of SFLAG$ bit 4 and a delay of 0.1 to 0.5 
second to clear any other interrupts that may be pending. Then you can enter 
your BREAK key handler (in which the BREAK key bit in SFLAG$ is reset) .. See 
KFLAG$ and SFLAG$ in the section about the @FLAGS SVC for more 
information. 

Entry Conditions: 
A 103 (X'67') 
HL = user break vector 
HL = 0 (sets system break vector) 

Exit Conditions: 
Success always. 
HL = existing break vector (if user break vector was set) 

Note: @EXIT and @CMNDI automatically restore BREAK to the system han
dler. @CMNDR does not do this. 

Software53 



@CHNIO SVC Number 20 

Pass Control to Next Module in Device Chain 
Passes control to the next module in the device chain" 

Entry Conditions: 
A = 20 (X'14') 
IX= contents of DCB in the header block 
B = GETIPUT/CTL direction code (11214) 
C = character (if output request) 

General: 
IX is not checked for validity 

Example: 
See the section "Device Driver and Filter Templates'.' 

Software 54 



@CKBRKC SVC Number 106 

Check BREAK bit and clear it Version 6.2 only 
Checks to see if the BREAK key has been pressed If a BREAK condition exists, 
(t1 CKBRKC resets the break bit, Bit lil of KFLAG$ 

Entry Conditions: 

A; 11il6(X'6A') 

Exit Conditions: 

Success always 
If Z flag is set, the break bit was not detected If NZ flag is set, the 
break bit was detected and is cleared. If the BREAK key is being de· 
pressed, the SVC will not return until the key is released 

General: 

Only AF is altered by this SVC 

Software 55 





@CKDRV 
Check Drive 

SVC Number 33 

Checks a drive reference to ensure that the drive is in the system and a 
TRSDOS Version 6 or LOOS 5.t3 (Model 111 Hard Disk Operating System) for
matted disk is in place. 

Entry Conditions: 
A=33 (X'21') 
C=logica/ drive number (0-7) 

Exit Conditions: 
Success always. 

If Z flag is set, the drive is ready 
If CF is set, the disk is write protected 

If NZ flag is set, the drive is not ready .. The user may examine OCT+ 0 
to see if the drive is disabled. 

Example: 
See Sample Program D, lines 35-55 

Software 57 



@CKEOF SVC Number 62 

Check for End-Of-File 
Checks for the end of file at the current logical record number 

Entry Conditions: 
A = 62 (X'3E') 
DE= pointer to the FCB of the file to checl< 

Exit Conditions: 
Success always 

General: 

If Z flag is set, LOG does not point at the end of file (LOG < LOF) 
If NZ flag is set, test A for error number: 

If A= X'1 G; LOG points at the end of the file (LOG= LOF) 
If A= X'1 □; LOG points beyond the end of the file (LOG > LOF) 
If Ase x· 1 G' or X' 10; then A= error number. 

Only AF is altered by this SVC 

Software 58 



@CKTSK SVC Number 28 

Check if Task Slot in Use 
Checks to see if the specified task slot is in use 

Entry Conditions: 
A=28 (X'1C') 
C=task slot to check (0-11) 

Exit Conditions: 
Success always. 

General: 

If Z flag is set, the task slot is available for use. 
If NZ flag is set, the task slot is already in use. 

AF and HL are altered by this SVC. 

Example: 
See Sample Program F, lines 70-73 

Software 59 



@CLOSE SVC Number 60 

Close a File or Device 
Terminates output to a file or device Any unsaved data in the buffer area is 
saved to disk and the directory is updated.. All files that have been written to 
must be closed, as well as all files opened witt1 UPDATE or higher access, 

If you remove a diskette containing an open iile, any attempt to close the file 
results in the message: 

•• CLOSE FAULT •• error message, <ENTER> to retry, <BREAK> to 
abort 

where error message is usually ""Drive not ready"' You may put the diskette 
back in the drive and: 

1 Press I ENTER I to close the file 
2 Press IBREAKI to abort the close. 

If you press IBREAKI, the NZ flag is set and Register A contains X'20', the error 
code for an Illegal drive number error 

Entry Conditions: 
A = 60 (X'3C') 
DE=pointer to FCB or DCB to close 

Exit Conditions: 
Success, Z flag set The file or device was closed. The filespec (excluding 

the password) or the devspec is returned to the FCB or DCB. 
Failure, NZ flag set 

A= error number 

General: 
Only AF is altered by this SVC 

Example: 
See Sample Program C, lines 360-368 

Software 60 



@CLS SVC Number 105 

Clear Video Screen Version 6.2 only 

Clears the video screen by sending a Home Cursor (X'1 C') and Clear to End of 
Frame (X'1 F') sequence to the video driver 

Entry Conditions: 

A = 105(X'69') 

Exit Conditions: 

Success, Z flag is set 
Failure, NZ is set 

A = error number 

General: 

Only AF is altered by this SVC 

Software 61 





@CMNDI SVC Number 24 

Execute Command with Return to System 
Passes a command string to TRSDOS for executiono After execution is com
plete, control returns to TRSDOS Ready, If the command gets an error, it still 
returns to TRSDOS Readyo 

Entry Conditions: 
A =24 (X'18') 
HL=pointer to butter containing command string terminated with X'IJJD' 

(up to 80 bytes, including the X'0D') 

General: 
This SVC does not return 

Example: 
See Sample Program E, lines 43-58, 

Software 63 



@CMNDR SVC Number 25 

Execute Command 
Executes a command or program and returns to the calling program. The exe
cuted program should maintain the Stack Pointer and exit via a RET instruction. 
All TRSDOS library commands comply with this requirement 

If bit 4 of CFLAG$ is set (see the @FLAGS SVC), then @CMNDR executes 
only system library commands. 

Entry Conditions: 
A =25 (X'19') 
HL=pointer to buffer containing command string terminated with X'UJO' 

(up to 8QJ bytes, including the X'QJD') 

Exit Conditions: 
Success always. 

HL = return code (See the section "Converting to TRSDOS Version 6" 
for information on return codes-) 

Registers AF, BC, DE, IX, and IY are altered by the command or pro
nr::im OYOf'! 1torl hu thk ~Ve 

If thi~o;;,~~~d in~~ki; a-us~r program which uses the alternate reg
isters, they are modified also 

Example: 
See Sample Program E, lines 18-29. 

Software 64 



@CTL SVC Numbers 

Output a Control Byte 
Outputs a control byte to a logical device. The DCB TYPE byte (DCB+ 0, Bit 2) 
must permit CTL operation. See the section "@CTL Interfacing to Device Driv
ers" for information on which of the functions listed below are supported by the 
system device drivers. 

Entry Conditions: 
A =5 (X'05') 
DE= pointer to DCB to control output 
C selects one of the following functions: 

If C = 0, the status of the specified device will be returned, 
If C = 1, the driver is requested to send a BREAK or force an interrupt 
If C = 2, the initialization code of the driver is to be executed, 
If C = 3, all buffers in the driver are to be reset This causes all pending 

1/0 to be cleared, 
If C = 4, the wakeup vector for an interrupt-driven driver is specified by 

the caller. 
IY = address to vector when leaving driver. If IY = 0, then 

the wakeup vector function is disabled. The RS-232C 
driver COM/DVR ($CL), is the only system driver that 
provides wakeup vectoring 

If C = 8, the next character to be read will be returned This allows data 
to be "previewed" before the actual @GET returns the character 

Exit Conditions: 
lfC=0, 

Z flag set, device is ready 
NZ flag set, device is busy 

A=status image, if applicable 
Note: This is a hardware dependent image. 

lfC=1, 
Success, Z flag set BREAK or interrupt generated. 
Failure, NZ flag set 

A= error number 
lfC=2, 

Success, Z flag set Driver initialized 
Failure, NZ flag set 

A= error number 
lfC=3, 

Success, Z flag set Buffers cleared 
Failure, NZ flag set 

A= error number 
lfC=4, 

Success always 
IY = previous vector address 

This function is ignored if the driver does not support wakeup 
vectoring 

lfC=8, 
Success, Z flag set. Next character returned 

A= next character in buffer 
Failure, NZ flag set Test register A: 

If A= 0, no pending character is in buffer 
If A cfo 0, A contains error number (TRSDOS driver returns Error 43.) 

Software 65 



General: 
BC, DE, HL, and IX are saved" 
Function codes 5 to 7, 9 to 31, and 255 are reserved for the svstem" Function codes 

32 to 254 are available for user definition" · 
Entry and exit conditions for user-defined functions are up to the design of the user

supplied driveL 

Example: 
See the section "Device Driver and Filter Templates" 

Software 66 



@DATE 
Get Date 

SVC Number 18 

Returns today's date in display format (MM/DDNY), 

Entry Conditions: 
A 18(X'12') 
HL = pointer to 8-byte buffer to receive date string 

Exit Conditions: 
Success always, 

HL = pointer to the end of the buffer supplied+ 1 
DE= pointer to start of DATE$ storage area in TR SOOS 
BC is altered by this SVC 

Example: 
See Sample Program F, lines 252-253 

Software 67 



@DCINIT 
Initialize the FDC 

SVC Number 42 

Issues a disk controller initialization command. The floppy disk driver treats this 
the same as @RSTOR (SVC 44) 

Entry Conditions: 
A= 42 (X'2A') 
C=logica/ drive number (0-7) 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

Example: 
See the example for @CKDRV in Sample Program D, lines 38-39 

Software 68 



@DCRES 
Reset the FDC 

SVC Number 43 

Issues a disk controller reset command. The floppy disk driver treats this the 
same as @ASTOR (SVC 44) 

Entry Conditions: 
A= 43 (X'2B') 
C=logica/ drive number (0-7) 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

Example: 
See the example for @CKDRV in Sample Program D, lines 38-39 

Software 69 



@DCSTAT SVC Number 40 

Test if Drive Assigned in DCT 
Tests to determine whether a drive is defined in the Drive Code Table (OCT). 

Entry Conditions: 
A= 40 (X'28') 
C=logical drive number (0-7) 

Exit Conditions: 
Success always. 

General: 

If Z is set, the specified drive is already defined in the OCT 
If NZ is set, the specified drive is not defined in the OCT 

Only AF is altered by this SVC 

Example: 
See Sample Program D, lines 27-33 

Software70 



@DEBUG 
Enter DEBUG 

SVC Number 27 

Forces the system to enter the DEBUG utility, Pressing ® IENTERI from the 
DEBUG monitor causes program execution to continue with the next instruc
tion, If you want to use the functions in the extended debugger when DEBUG 
is entered in this fashion, you must issue the DEBUG (E) command (optionally 
with the @CMNDR SVC) before this SVC is executed 

Entry Conditions: 
A=27 (X'1B') 

General: 
This SVC does not return unless® is entered in DEBUG, 

Example: 
See Sample Program A, lines 54-60 

Software 71 



@DECHEX SVC Number 96 

Convert Decimal ASCII to Binary 
Converts a decimal ASCII string to a 16-bit binary number. Overflow is not 
trapped. Conversion stops on the first out-of-range character 

Entry Conditions: 
A = 96 (X'60') 
HL=pointer to decimal string 

Exit Conditions: 
Success always. 

BC= binary conversion of ASCII st1ing 
HL =pointer to the te,minating byte 
AF is altered by this SVC. 

Example: 
See Sample Program B, lines 88-95 

Software 72 



@DIRRD SVC Number 87 

Directory Record Read 
Reads a directory sector that contains the directory entry for a specified Direc
tory Entry Code (DEC) The sector is placed in the system buffer and the reg
ister pair HL points to the first byte of the directory entry specified by the DEC 

Entry Conditions: 
A= 87 (X'57') 
B = Directory Entry Code of the file 
C=logical drive number (0-7) 

Exit Conditions: 
Success, Z flag set 

HL = pointer to directory entry specified by register B 
Failure, NZ flag set 

General: 

A = error number 
HL is altered 

AF is always altered. 
If the drive does not contain a disk, this SVC may hang indefinitely waiting 

for formatted media to be placed in the drive. The programmer should 
perform a @CKDRV SVC before executing this call 

If the Directory Entry Code is invalid, the SVC may not return or it may 
return with the Z flag set and HL pointing to a random address. Care 
should be taken to avoid using the wrong value for the DEC in this call 

Example: 
See Sample Program C, lines 152-174 

Software 73 



@DIRWR SVC Number 88 

Directory Record Write 
Writes the system buffer back to the disk directory sector that contains the 
directory entry of the specified DEC. 

Entry Conditions: 
A= 88 (X'58') 
B = Directory Entry Code of the file 
C=logical drive number (©-7) 

Exit Conditions: 
Success, Z flag set 

HL = pointer to directory entry specified by register B 
Failure, NZ flag set 

General: 

A = error number 
HL is altered. 

AF is always altered. 
If the drive does not contain a disk, this SVC may hang indefinitely waiting 

ror tormaned media to oe placed in the drive. I he programmer should 
perform a @CKDRV SVC before executing this call 

If the Directory Entry Code is invalid, the SVC may not return or it may 
return with the Z flag set and HL pointing to a random address. Care 
should be taken to avoid using the wrong value for the DEC in this call 

Example: 
See the example for@DIRRD in Sample Program C, lines 152-174. 

Software 74 



@DIVS 
8-Bit Divide 

Performs an 8-bit unsigned integer divide, 

Entry Conditions: 
A=93 (X'5D') 
E=dividend 
C=divisor 

Exit Conditions: 
Success always, 

A=quotient 
E = remainder 
No other registers are altered, 

Example: 
See Sample Program B, lines 61-64, 

Software 75 

SVC Number 93 



@DIV16 SVC Number 94 

16-Bit by 8-Bit Divide 
Performs a division of a 16-bit unsigned integer by an 8-bit unsigned integer 

Entry Conditions: 
A = 94 (X'5E') 
HL = dividend 
C =divisor 

Exit Conditions: 
Success always 

HL = quotient 
A = remainder 
No other registers are altered 

Example: 
See Sample Program B, lines 105-109 

Software76 



@DODIR SVC Number 34 
Do Directory Display/ Buffer 

Reads files from a disk directory or finds the free space on a disk, The directory 
information is either displayed on the screen (in five-across format} or sent to a 
buffer. The directory information buffer consists of 18 bytes per active, visible 
file: the first 16 bytes of the directory record, plus the ERN (ending record num
ber), An X'FF' marks the buffer end 

Entry Conditions: 
A= 34 (X'22') 
C=logical drive number (0-7) 
B selects one of the following functions: 

If B = 0, the directory of the visible, non-system files on the disk in the 
specified drive is displayed on the screen The filenames are dis
played in columns, 5 filenames per line 

If B = 1, the directory is written to memory. 
HL = pointer to buffer to receive information 

If B = 2, a directory of the files on the specified drive is displayed for files 
that are visible, non-system, and match the extension partspec 
pointed to by HL 
HL = partspec for the filename's extension 

This field must contain a valid 3-character extension, padded 
with dollar signs($). For example, to display all visible, non
system files that have the letter 'C' as the first character of the 
extension, HL should point to the string "C$$': 

If B = 3, a directory of the files on the specified drive is written to the buffer 
that is specified by HL for files that match the extension partspec 
pointed to by HL 
HL = pointer to the 3-byte partspec and to the buffer to receive the 

directory records (see general notes) 
Keep in mind that the area pointed to by HL is shared .. If you are 

using this buffer more than once, you have to re-create the 
partspec in the buffer before each call because the previous 
call will have erased the partspec by writing the directory 
records, 

If B = 4, the disk name, original free space, and current free space on the 
disk is read 
HL = pointer to a 2@-byte buffer to receive information 

Exit Conditions: 
Success, Z flag set 

If B = 1 or 3, the directory records have been stored, 
HL = pointer to the beginning of the buffer 

If B = 0 or 2, the filenames or matching filenames are displayed with 5 
filenames per line 

If B = 4, the disk name and free space information are stored in the 
format: 

Bytes 0-7 = Disk name. Disk name is padded on the right 
with blanks (X'20') 

Bytes 8-15 = Creation date (the date the disk was formatted 
or was the target disk in a mirror image 
backup) .. The date is in the format MM/DDNY 

Bytes 16-17=Total K originally available in binary LSB-MSB 
format 

Bytes 18-19= Free K available now in binary LSB-MSB 
format 

HL = pointer to the beginning of the data area 
Failure, NZ flag set 

A= error number 

Software 77 



General: 
AF is the only register altered by this SVC 
The size oi the butter to receive directory records must be large enough to 

hold directory entries for the maximum number of files allowed on the 
drive and disk you specify For example, if the drive is a hard disk, you 
must be able to store 256 directory entries, and each entry requires 18 
bytes of storagR For more information on calculating the amount of 
space needed for this butter, see the tables under "Directory Records:· 
They give the maximum number of entries allowed on a given type of 
disk. You must add 2 records to this value when B = 1 to store the direc
tory entry for DIR/SYS and BOOT/SYS. 

Example: 
See Sample Program E, lines 32-41it 

Software 78 



@DSP 
Display Character 

SVC Number2 

Outputs a byte to the video display" The byte is displayed at the current cursor 
position" 

Entry Conditions: 
A=2 (X'©2') 
C = byte to display 

Exit Conditions: 
Success, Z flag set 

A= byte displayed 
Failure, NZ flag set 

A= error number 

General: 
DE is altered by this SVC" 

Example: 
See Sample Program C, lines 219-221 

Software 79 



@DSPLY SVC Number 10 

Display Message Line 
Displays a message line, starting at the current cursor position. The line must 
be terminated with either a carriage return (X'0D') or an ETX (X'03'). If an ETX 
terminates the line, the cursor is positioned immediately after the last character 
displayed 

Entry Conditions: 
A = 10 (X'0A') 
HL=pointer to first byte of message 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

General: 
AF and DE are altered by this SVC. 

Example: 
SAP. SAmf>IA Progrnm C. line,s 35-37 

Software SO 



@ERROR SVC Number 26 

Entry to Post an Error Message 
Provides an entry to post an error message If bit 7 of register C is set, the error 
message is displayed and return is made to the calling program If bit 6 is not 
set, the extended error message is displayed Under versions prior to 6 2 the 
error display is in the following format: 

*** Errcod=xx, Error Messade strin9 *** 
<filesPec or deusPec> 

Referenced at X'dddd' 

Under Version 6.2 the error display is in the following format: 

**Error code=><><, Returns to}{' dddd' 
**Error 1,1essage strin9 
<filesPec, devsPec, or open FCBIDCB status··, 
Las t S 1.1 C = n n n , Re t u r n e d t o }{ ' r r r r 1 

dddd is the return address of the (<1 ERROR SVC in the application program 
nnn is the last SVC executed before the (<1 ERROR SVC request 
rrrr is the address the previous SVC returned to in the application program 

If bit 6 is set, then only the "Error message string" is displayed. This bit is 
ignored if bit 6 of SFLAG$ (the extended error message bit) is set. If bit 6 of 
CFLAG$ is set, then no error message is displayed .. If bit 7 of CFLAG$ is set, 
then the "Error message string" is placed in a user buffer pointed to by register 
pair DE See @FLAGS (SVC 101) for more information on SFLAG$ and 
CFLAG$ 

Entry Conditions: 
A=26 (X'1A') 
C = error number with bits 6 and 7 optionally set 

Exit Conditions: 
Success always 

General: 
To avoid a looping condition that could result from the display device gen

erating an error, do not check for errors after returning from @ERROR 
If you do not set bit 6 of register C, then you should execute this SVC only 

after an error has actually occurred 

Example: 
See Sample Program C, lines 379-389 

Software 81 



@EXIT 
EXlt to TH~UU~ 

SVC Number 22 

This is the normal program exit and return to TRSDOS .. An error exit can be 
done by placing a non-zero value in HL. Values 1 to 62 indicate a primary error 
as described in TRSDOS Error Codes (Appendix A). (A non-zero value in HL 
causes an active JCL to abort) 

Entry Conditions: 
A = 22 (X'16') 
HL= Return Code 

If HL = 11l, then no error on exit. 
If HL ,fo 11l, then the @ABORT SVC returns X'FFFF' in HL automatically. 

General: 
This SVC does not return 

Example: 
See Sample Program B, lines 211l6-211l7 

Software 82 



@FEXT SVC Number 79 

Set Up Default File Extension 
Inserts a default file extension into the File Control Block if the file specification 
entered contains no extension. @FEXT must be done before the file is opened. 

Entry Conditions: 
A = 79 (X'4F') 
DE= pointer to FCB 
HL=pointer to default extension (3 characters; alphabetic characters 

must be upper case and first character must be a letter) 

Exit Conditions: 
Success always. 

AF and BC are altered by this SVC. 
If the default extension is used, HL is also altered. 

Example: 
See Sample Program C, lines 111-132. 

Software83 



@FLAGS SVC Number 101 

Point IV to System Flag Table 
Points the IY register to the base of the system flag table The status flags listed 
below can be referenced off IY. You can alter those bits marked with an asterisk 
(*). Bits without an asterisk are indicators of current conditions, or are unused 
or reserved 

Note: You may wish to save KFLAG$ and SFLAG$ if you intend to modify them 
in your program, and restore them on exit 

Entry Conditions: 
A= 101 (X'65') 

Exit Conditions: 
Success always. 
IY = pointer to the following system information: 
IY - 1 Contains the overlay request number of the last system module 

resident in the system overlay region 
IY + 0 = AFLAG$ (allocation flag under Version 6 2 only) 

IY + 2 = CFLAG$ 

Contains the startin9 cylinder number to be used when 
searching for free space on a diskette. It is normally 1 
If the starting cylinder number is larger than the number 
of cylinders for a particular drive, 1 is used for that drive 

• bit 7 - If set, then (i, ERROR will transfer the "Error message 
string" to your buffer instead of displaying it The mes
sage is terminated with X'0D.' 

* bit 6 If set, do not display system error messages 0-62 See 
(i, ERROR (SVC 26) for more information 

• bit 5 If set, sysgen is not allowed 
* bit 4 - If set, then @CMNDR will execute only system library 

commands. 
bit 3 - If set, @RUN is requested from either the SET or 

SYSTEM (DRIVER=) commands. 
bit 2 If set, @KEVIN is executing due to a request from 

SYS1. 
bit 1 If set, @CMNDR is executing. This bit is reset by 

@EXIT and @CMNDI 
• bit 11) If set, HIGH$ cannot be changed using @HIGH$ 

(SVC 100) .. This bit is reset by @EXIT and @CMNDI 
IY +3 = DFLAG$ (device flag) 

• bit 7 - "1" if GRAPHIC printer capability desired on screen 
print (ICONTROLI GJ causes screen print See the SYS
TEM (GRAPHIC) command under "Technical Infor
mation on TRSDOS Commands and Utilities'.') 

bit 6 - "1" if KSM module is resident 
bit 5 - Currently unused 
bit 4 "1" if MemDisk active 
bit 3 - Reserved 
bit 2 "1" if Disk Verify is enabled 

• bit 1 "1" if TYPE-AHEAD is active 
bit 0 - "1" if SPOOL is active 

IY +4 EFLAG$ (ECI flag under Version 6 2 only) 
Indicates the presence of an ECI program If any of the 
bits are set, an ECI is used, rather than the SYS1 inter
preter. The ECI program may use these bits as necce
sary However, at least one bit must be set or the ECI is 
not executed 

Software 84 



IY + 5 = FEMSK$ (mask for port 0FEH) 
IY + 8 = IFLAG$ (international flag) 

• bit 7 - If "1;· 7-bit printer filter is active 
If "O;' normal 8-bit filters are present 

• bit 6 - If "1;' international character translation will be per-
formed by printer driver 
If "O;' characters received by printer driver will be sent 
to the printer unchanged 

bit 5 - Reserved for future languages 
bit 4 - Reserved for future languages 
bit 3 - Reserved for future languages 
bit 2 - Reserved for future languages 
bit 1 - If "1;' German version of TRSDQS is present 
bit 0 - If "1;' French version of TRSDOS is present 
If bits 5-0 are all zero, then USA version of TRSDOS is present 

IY + 10 = KFLAG$ (keyboard flag) 
bit 7 - "1" if a character is present in the type-ahead buffer 
bit 6 - Currently unused 

• bit 5 - "1" if CAPS lock is set 
bit 4 - Currently unused 
bit 3 - Currently unused 

• bit 2 - "1" if IENTERI has been pressed 
• bit 1 - "1" if I SHIFT I @D has been pressed (PAUSE) 
• bit 0 - "1" if IBREAKI has been pressed 

Note: To use bits 0-2, you must first reset them and then test to 
see if they become set 

IY + 12 = MODOUT (image of port 0ECH) 
IY + 13=NFLAG$ (network flag under Version 6 .. 2) 

bit 7 - Reserved for system use 
bit 6 - If set, the application program is in the task processor 

Programmers must not modify this bit 
bit 5 - Reserved for system use 
bit 4 - Reserved for system use 
bit 3 - Reserved for system use. 
bit 2 - Reserved for system use 
bit 1 - Reserved for system use 

• bit O - If set, the "file open bit" is written to the directory. 
IY + 14 = OPREG$ (memory management & video control image) 
IY + 17 = RFLAG$ (retry flag under Version 6,2 only) 

Indicates the number of retrys for the floppy disk driver 
This should be an even number larger than two 

IY + 18 = SFLAG$ (system flag) 
bit 7 - "1" if DEBUG is to be turned on 

• bit 6 -"1" if extended error messages desired (see 
@ERROR for message format); overrides the setting 
of bit 6 of register C on @ERROR (SVC 26) and 
should be used only when testing 

bit 5 - "1" if DO commands are being executed 
• bit 4 - "1" if BREAK disabled 

bit 3 - "1" if the hardware is running at 4 mhz (SYSTEM 
(FAST)). If "0;' the hardware is running at 2 mhz (SYS
TEM (SLOW)). 

• bit 2 - "1" if LOAD called from RUN 
• bit 1 - "1" if running an EXECute only file 
• bit 0 - "1" specifies no check for matching LRL on file open 

and do not set file open bit in directory. This bit should 
be set just before executing an @OPEN (SVC 59) if 
you want to force the opened file to be READ only dur
ing current 1/0 operations. As soon as either call is 
executed, SFLAG$ bit 0 is reset If you want to disable 
LRL checking on another file, you must set SFLAG$ 
bit 0 again 

Software85 



IY + 19 = TFLAG$ (type flag under Version 6 2 only) 
Identifies the Radio Shack hardware model TFLAG$ 
allows programs to be aware of the hardware environ
ment and the char act er sets available for the display 
Current assignments are: 

2 indicates Model II 
4 indicates Model 4 
5 indicates Model 4P 

12 indicates Model 12 
IY + 20 = UFLAG$ (user flag under Version 6 2 only) 

May be set by application programs and is sysgened 
properly 

IY + 21 = VFLAG$ 
bit 7 - Reserved for system use 

• bit 6 - "1" selects solid cursor, "11)" selects blinking cursor 
bit 5 - Reserved for system use 

• bit 4 - "1" if real time clock is displayed on the screen 
bits lil-3 - Reserved for system use 

IY + 22 = WRINTMASK$ (mask for WRINTMASK port) 
IY + 26 = SVCTABPTR$ (pointer to the high order by1e of the SVC table 

address; low order by1e = lillil) 
IY + 27 = Version ID by1e (60H = TRSDOS version 6 lilxx, 

f,1 H = TRS[)OS VP.rsion 61 x. X. etc.) 
IY - 47 = Operating system release number Provides a third and fourth 

character (12H = TRSDOS version x.xJ 2) 
IY-t-28 
to 
IY + 30 =@ICNFG vector 
IY-t-31 
to 
IY + 33 = @KITSK vector 

Software 86 



@FNAME 
Get Filename 

SVC Number 80 

Gets the filename and extension from the directory using the specified Direc
tory Entry Code (DEC) for the file 

Entry Conditions: 
A = 80 (X'50') 
DE= pointer to 15-byte buffer to receive filenamelextension:drive, fol

lowed by a X'l//0' as a terminator 
B = DEC of desired file 
C =logical drive number of drive containing file (0-7) 

Exit Conditions: 
Success, Z flag set 

HL = pointer to directory entry specified by register B 
Failure, NZ flag set 

General: 

A = error number 
HL is altered 

AF and BC are always altered 
If the drive does not contain a disk, this SVC may hang indefinitely waiting 

for formatted media to be placed in the drive. The programmer should 
perform a @CKDRV SVC before executing this calL 

If the Directory Entry Code is invalid, the SVC may not return or it may 
return with the Z flag set and HL pointing to a random address. Care 
should be taken to avoid using the wrong value for the DEC in this call. 

Example: 
See Sample Program C, lines 274-286. 

Software 87 





@FSPEC SVC Number 78 

Assign File or Device Specification 
Moves a file or device specification from an input buffer into a File Control Block 
(FCB), Conversion of lower case to upper case is made automatically, 

Entry Conditions: 
A = 78 (X'4E') 
HL = pointer to buffer containing filespec or devspec 
DE= pointer to 32-byte FCB or DCB 

Exit Conditions: 
Success always, 

General: 

If the Z flag is set, the file specification is valid, 
HL=pointer to terminating character 
DE= pointer to start of FOB 

If the NZ flag is set, a syntax error was found in the filespec 
HL = pointer to invalid character 
DE= pointer to start of FCB 
A =invalid character 

AF and BC are altered 

Example: 
See Sample Program C, lines 53-65 

Software 89 



@GET SVC Number3 

Get One Byte From Device or File 
Gets a byte from a logical device or a file. The DCB TYPE byte (DCB+ 0, Bit 0) 
must permit a GET operation for this call to be successful. 

Entry Conditions: 
A =3 (X'03') 
DE=pointer to DCB or FCB 

Exit Conditions: 
Success, Z flag set. 

A= character read from the device or file 
Failure, NZ flag set Test register A: 

If A= 0, no character was available 
If A J 0, A contains error number. 

Example: 
See the section "Device Driver and Filter Templates'.' 

Software9O 



@GTDCB SVC Number 82 
Get Device Control Block Address 

Finds the location of a Device Control Block (DCB), If DE= 0 (no device name 
specified), HL returns the address of the first unused DCB found 

Entry Conditions: 
A =82 (X'52') 
DE= 2-character device name (E = first character, D = second character) 

Exit Conditions: 
Success, Z flag set DCB was foundo 

HL = pointer to start of DCB 
Failure, NZ flag set No DCB was availablR 

A = Error 8 (Device not available) 
HL is altered, 

General: 
AF is always altered by this SVC, 

Example: 
See the section "Device Driver and Filter Templates'.' 

Software 91 



@GTDCT SVC Number 81 
Get Drive Code Table Address 

Gets the address of the Drive Code Table for the requested drive. 

Entry Conditions: 
A= 81 (X'51') 
C=logica/ drive number (0-7) 

Exit Conditions: 
Success always 

General: 

IY = pointer to the OCT entry for the specified drive 
AF is always altered by this SVC. 

If the drive number is out of range, the IY pointer will be invalid. This call 
does not return ZINZ to indicate if the drive number specified is valid 
(0-7) or enabled. 

Example: 
See the example for @DCSTAT in Sample Program D, lines 27-33 

Software92 



@GTMOD SVC Number 83 
Get Memory Module Address 

Locates a memory module, if the standard memory header is at the start of the 
module .. The scanning starts with the system drivers in low memory, then 
moves to any high memory modules. If any routine is encountered that does not 
start with a proper header, scanning stops. 

Entry Conditions: 
A = 83 (X'53') 
DE= pointer to memory module name in upper case, terminated with any 

character in the range (!J(!)-31 

Exit Conditions: 
Success always. 

General: 

If the Z flag is set, the module was found. 
HL = pointer to first byte of memory header 
DE= pointer to first byte after module name 

If the NZ flag is set, the module was not found. 
HL is altered. 

AF is always altered by this SVC 

Example: 
See Sample Program F, lines 144-154. 

Software93 



@HDFMT 
Hard Disk Format 

SVC Number 52 

Passes a format drive command to a hard disk driveL If the hard disk controller 
accepts it as a valid command, then it formats the entire disk drive. If the hard 
disk controller does not accept it, then an error is returned. Radio Shack hard
ware does not currently support @HDFMT 

Entry Conditions: 
A= 52 (X'34') 
C=logical drive numbe, (0-7) 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

Software 94 



@HEXDEC SVC Number 97 
Convert Binary to Decimal ASCII 

Converts a binary number in HL to decimal ASCIL 

Entry Conditions: 
A =97 (X'61') 
HL=number to convert 
DE= pointer to 5-character buffer to hold converted number 

Exit Conditions: 
Success always, 

DE= pointer to end of buffer+ 1 
AF, BC, and HL are altered by this SVC, 

Example: 
See Sample Program B, lines 73-76. 

Software95 



@HEX8 SVC Number 98 
Convert 1 Byte to Hex ASCII 

Converts a 1-byte number to hexadecimal ASCII. 

Entry Conditions: 
A = 98 (X'62') 
C = number to convert 
HL = pointer to a 2-character buffer to hold the converted number 

Exit Conditions: 
Success always. 

HL = pointer to the end of buffer+ 1 
Only AF is altered by this SVC. 

Example: 
See Sample Program B, lines 236-246. 

Software 96 



@HEX16 
Convert 2 Bytes to Hex ASCII 

Converts a 2-byte number to hexadecimal ASCII 

Entry Conditions: 
A = 99 (X'63') 
DE= number to convert 

SVC Number 99 

HL = pointer to 4-character buffer to hold converted number 

Exit Conditions: 
Success always. 

HL=pointer to end of buffer+ 1 
Only AF is altered by this SVC. 

Example: 
See Sample Program B, lines 248-258 

Software 97 



@HIGH$ SVC Number 100 

Get or Alter HIGH$ or LOW$ 
Provides the means to read or alter the HIGH$ and LOW$ values 

Note: HIGH$ must be greater than LOW$" LOW$ is reset to X'2FFF' by @EXIT, 
@ABORT, and @CMNDL 

Entry Conditions: 
A= 100 (X'64') 
B selects HIGH$ or LOW$ 

If B = 0, SVC deals with HIGH$ 
If B,;, 0, SVC deals with LOW$ 

HL selects one of the following functions: 
If HL= 0, the current HIGH$ or LOW$ is returned 
If HL4'0, then HIGH$ or LOW$ is set to the value in HL 

Exit Conditions: 
Success, Z flag set 

HL=current HIGH$ or LOW$. If HL,/,0 on entry, then HIGH$ or LOW$ 
is now set to that value 

Failure, NZ flag set 
A = error number 

General: 
If bit 0 of CFLAG$ is set (see @FLAGS), then HIGH$ cannot be changed 

with this calL The call returns error 43, "SVC parameter error'.' 

Example: 
See Sample Program F, lines 75-860 

Software 9B 



@INIT SVC Number 58 
Open or Initialize File 

Opens a fileo If the file is not found, this SVC creates it according to the file 
specification 

Entry Conditions: 
A = 58 (X'3A') 
HL = pointer to 256-byte disk l/O buffer 
DE= pointer to FCB containing the file specification 
B = Logical Record Length to be used while file is open 

Exit Conditions: 
Success, Z flag set File was opened or created 

The CF flag is set if a new file was created, 
Failure, NZ flag set 

A= error number 

General: 
Only AF is altered by this SVC 
The file open bit is set in the directory if the access level is UPDATE or 

greater. 

Example: 
See Sample Program C, lines 260-272 

Software 99 



@IPL SVC Number0 

Reboot the System 
Does a software reset Floppy drive 0 must contain a system disk. @IPL uses 
the standard boot sequence, the same as for a hard reset (pressing the reset 
button). Memory locations X'41 E5'-X'4225' and X'4300'-X'43FF are altered 
during the boot of the machine. 

Entry Conditions: 
A=0 (X'00') 

General: 
This SVC does not returrL 

Software 100 



@KBD SVCNumber8 
Scan Keyboard and Return 

Scans the keyboard and returns a character if a key is pressed. II no key is 
pressed, a zero value is returned. 

Entry Conditions: 
A=8 (X'08') 

Exit Conditions: 
Success, Z flag set 

A= character pressed 
Failure, NZ set 

II A= 0, no character was available 
II A,/, 0, then A contains error number. 

General: 
DE is altered by this SVC 

Example: 
See Sample Program C, lines 198·200. 

Software 101 



@KEY SVC Number1 
Scan *Kl Device, Wait for Character 

Scans the •Kl device and returns with a character It does not return until a 
character is input to the device 

Note: The system suspends execution of the program that issued the SVC until 
a character can be obtained, Background tasks will continue to run normally, 

Entry Conditions: 
A=1 (X'01') 

Exit Conditions: 
Success, Z flag set 

A= character entered 
Failure, NZ flag set 

A= error number 

General: 
DE is altered by this SVC 

,::"v ... ,,....,."""'1,.... 

S;e Sample Program B, lines 202-203 

Software 102 



@KEVIN SVCNumber9 
Accept a Line of Input 

Accepts a line of input until terminated by either an ®£iiii) or a ~o Entries 
are displayed on the screen, starting at the current cursor position" Backspace, 
tab, and line delete are supported If JCL is active, the line is fetched from the 
active JCL fileo 

Entry Conditions: 
A =9 (X'09') 
HL = pointer to user line buffer of length B + 1 
B = maximum number of characters to input 
C =0 

Exit Conditions: 
Success, Z flag set 

HL = pointer to start of buffer 
B = actual number of characters input 
CF is set if I BREAK I terminated the input 

Failure, NZ flag set 
A = error number 

General: 
DE and C are altered by this SVC 

Example: 
See Sample Program C, lines 39-4T 

Software 103 



@KLTSK SVC Number 32 
Remove Currently Executing Task 

When called by an executing task driver, removes the task assignment from the 
task table and returns to the foreground application that was interrupted. 

Entry Conditions: 
A= 32 (X'20') 

General: 
This SVC does not return 

Example: 
See the example for @RMTSK in Sample Program F, lines 134-142 

Software 104 



@LOAD 
Load Program File 

SVC Number 76 

Loads a program file. The file must be in load module format 

Entry Conditions: 
A = 76 (X'4C') 
DE= pointer to FCB containing filespec of the file to load 

Exit Conditions: 
Success, Z flag set 

HL = transfer address retrieved from file 
Failure, NZ flag set 

A = error number 

Example: 
See Sample Program A, lines 50-56. 

Software 105 



@LOC 
Calculate Current Logical Record Number 

Returns the current logical record number. 

Entry Conditions: 
A = 63 (X'3F') 
DE= pointer to the file's FCB 

Exit Conditions: 
Success, Z flag set 

BC=logica/ record number 
Failure, NZ flag set 

A = error number 

General: 
AF is altered by this SVC. 

Example: 
See Sample Program C, lines 305-311 

Software 106 

SVC Number 63 



@LOF SVC Number 64 
Calculate the EOF Logical Record Number 

Returns the EOF (End of File) logical record number. 

Entry Conditions: 
A =64 (X'40') 
DE =pointer to FCB for the file to check 

Exit Conditions: 
Success, Z flag set. 

BC= the EOF logical record number 
Failure, NZ flag set 

A = error number 

General: 
Only AF is altered by this SVC. 

Example: 
See the example for @LOG in Sample Program C, lines 305-311 

Software 107 



@LOGER SVC Number 11 
Issue Log Message 

Issues a log message to the Job Log. The message can be any character string 
terminating with a carriage return (X'lilD'). 

Entry Conditions: 
A = 11 (X'0B') 
HL=pointer to first character in message line 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

General: 
Only AF is altered by this SVC. 

Example: 
LD HL,TE}{T ;Point at messaie to output 
LD A,@LOGER ;and output it to the Job 

; I o ~ 
RST 28H ;call the @LOGER SVC 

TE>(T: DEFM 'This is a fllessage for the Job Log' 
DEFB IIIDH ;Message 1,1ust be terfllinated 

;with an <ENTER>, 

Software 108 



@LOGOT SVC Number 12 
Display and Log Message 

Displays and logs a message. Performs the same function as @DSPLY fol
lowed by @LOGER 

Entry Conditions: 
A = 12 (X'0C') 
HL = pointer to first character in message line 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

General: 
Only AF is altered by this SVC. 
To avoid a looping condition that could result from the display device gen

erating an error, no error checking should be done after returning from 
@LOGOT. 

Example: 

TE){T: 

LD 
LD 

RST 

DEFM 
DEFM 
DEFB 

HL,TEXT ;Point at messale to outPut 
A ,@LOGOT ;and output it to the Job 

;Loi AND the disPlaY 
28H ;call the @LOGOT SVC 

'This messale will be displayed both in' 
'the Job Loi and on the disPlaY,' 
0DH ;Must terminate text with an 

; <ENTER>, 

Software 1 09 



@MSG SVC Number 13 
Send Message to Device 

Sends a message line to any device or file, 

Entry Conditions: 
A = 13 (X'0D') 
DE= pointer to DCB or FCB of device or file to receive output 
HL = pointer to message line terminated with X'lbD' or X'lb3' 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

General: 
Only AF is altered by this SVC 

Example: 
LO HL , TEXT 
LO DE ,OCBP 

LO A ,@MSG 
RST 28H 

;Point at message to outPut 
;Point at the device control 
;block for our de11ice 
;and write this teHt to it 
;call the @MSG SVC 

TE){T: OEFM 'D555-555<LOG!N USER>' lTeHt to •Hite to 
;this device, In this case, 
;it is a dialing Modem. 

DEFB lil3H ;Terminate the message 

Software 110 



@MUL8 SVC Number 90 
8-Bit Multiplication 

Performs an 8-bit by 8-bit unsigned integer multiplication" The resultant product 
must fit into an 8-bit field. 

Entry Conditions: 
A=90 (X'5A') 
C = multiplicand 
E=multiplier 

Exit Conditions: 
Success always. 

A=product 
DE is altered by this SVC. 

Example: 
See Sample Program B, lines 150-1530 

Software 111 



@MUL16 SVC Number 91 

16-Bit by 8-Bit Multiplication 
Performs an unsigned integer multiplication of a 16-bit multiplicand by an 8-bit 
multiplier The resultant product is stored in a 3-byte register field. 

Entry Conditions: 
A = 91 (X'5B') 
HL = multiplicand 
C =multiplier 

Exit Conditions: 
Success always 

HL = two high-order bytes of product 
A = low-order byte of product 
DE is altered by this SVC. 

Example: 
See Sample Program B, lines 183-187 

Software 112 



@OPEN SVC Number 59 
Open Existing File or Device 

Opens an existing file or device. 

Entry Conditions: 
A = 59 (X'3B') 
HL = pointer to 256-byte disk /10 buffer 
DE= pointer to FCB or DCB containing filespec or devspec 
B =logical record length for open file 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

General: 
AF is altered by this SVC. 
The file open bit is set in the directory if the access level is UPDATE or 

greater. 

Example: 
See Sample Program C, lines 134-15l?L 

Software 113 



@PARAM SVC Number 17 

Parse Parameter String 
Parses an optional parameter string. Its primary function is to parse command 
parameters contained in a command line starting with a parenthesis. The 
acceptable parameter format is: 

PARM = X'nnnn' .. hexadecimal entry 
PARM= nnnnn .... decimal entry 
PARM= "string" .. alphanumeric entry 
PARM= flag ON, OFF, Y, N, YES, or NO 

Note: Entering a parameter with no equal sign or value is the same as 
using PARM= ON. Entering PARM= with no value is the same as 
using PARM= OFF 

Entry Conditions: 
A =17(X'11') 
DE= pointer to beginning of your parameter table 
HL=pointer to command line to parse (the parameter string is enclosed 

within parentheses) 

Exit Conditions: 
Success always. 

General: 

If Z is set, either valid parameters or no parameters were found 
If NZ is set, a bad parameter was found. 

NZ is not returned if parameter types other than those specified are 
entered .. The application must check the validity of the response byte. 

The valid parameters are contained in a user table which must be in one of the 
following formats. (Parameter names must consist of alphanumeric charac
ters, the first of which is a lettec) 

For use with TRSDOS Version 6, use this format: 

The parameter table starts with a single byte X'80'. Each parameter is 
stored in a variable length field as described below. 

1) Type Byte (Type and length byte) 
Bit 7 - If set, accept numeric value 
Bit 6- If set, accept flag parameter 
Bit 5- If set, accept "string" value 
Bit 4-lf set, accept first character of name as abbreviation 
Bits 3-0-Length of parameter name 

2) Actual Parameter Name 

3) Response byte (Type and length found) 
Bit 7 -Numeric value found 
Bit 6-Flag parameter found 
Bit 5-String parameter found 
Bits 4-0-Length of parameter entered. If length is 0 and the 2-byte 

vector points to a quotation mark (X'22'), then the parameter 
was a null string. Otherwise, a length of 0 indicates that the 
parameter was longer than 31 characters. 

4) 2-byte address vector to receive the parsed parameter values. 

The 2-byte memory area pointed to by the address field of your table 
receives the value of PARM if PARM is non-string. If a string is entered, the 
2-byte memory area receives the address of the first byte of "string'.' The 
entries ON, YES, and Y return a value of X'FFFF'; OFF, NO, and N return 
x·0000: If a parameter name is specified on the command line and is fol-

Software 114 



lowed by an equal sign and no value, then X'0000' or NO is returned. If a 
parameter name is used on the command line without the equal sign, then 
a value of X'FFFF' or ON is assumed. For any allowed parameter that is 
completely omitted on the command line, the 2-byte area remains 
unchanged and the response byte is 0 

The parameter table is terminated with a single byte x·00: 

For compatibility with LDOS 5.t3, use this format: 

A 6-character "word" left justified and padded with blanks followed by a 2-
byte address to receive the parsed values. Repeat word and address for as 
many parameters as are necessary. You must place a byte of X'00' at the 
end of the table. 

Example: 

COMAND: 

PARM: 

RESP: 

VAL: 

LD HL,COMAND ;Point at co111111and buffer 
LO DE,PARM ;Point at Para1,1eter list 
LD A,@PARAM iParse the ite1t1s on the 

RST 
JR 

LD 
AND 
JR 

LD 
OR 
JR 

JR 

28H 
NZ,ERROR 

A I (RESP) 
040H 
Z,BAD 

A I (VAL> 
A 
Z,OFF 

ON 

DEFS 80 

DEFB BIZJH 
DEFB IIIZJH+G 

;coriunand line 
;call the @PARAM SVC 
;An error occurred (not 
;included here) 
;Get response code 
;Test response flags 
;user specified soroethinf 
;11Ke UPDATE=X'1234' or 
iUPDATE="HELLO" 
;Get 1st bYte of VAL word 
nest the value 
;uPDATE=OFF or UPDATE=NO was 
;specified 
;UPDATE=ON or UPDATE=YES was 
;specified 

;Area where co111111and i.s 
;stored 
;Table header code 
;a0 savs we want a flar 
HYES/NO), G is length of 
;the ParaMeter name 

DEFM 'UPDATE' ;para1t1eter na1,1e 
DEFB Ill lResPonse area 
DEFW VAL P)ecto r to VAL 
DEFB Ill ;End of Table code 
DEFS 2 ;Area to receive a Para1,1eter 

;lJalue 

Software 115 



@PAUSE SVC Number 16 
Suspend Program Execution 

Suspends program execution for a specified period of time and goes into a 
"holding" state. The delay is at least 14.3 microseconds per count 

Entry Conditions: 
A = 16 (X'10') 
BC= delay count 

Exit Conditions: 
Success always. 

Example: 
LD BC ,36A2H Wait for about 200 Milli

seconds. 14.3 usecs * 
13986 is approx, 200 
fllsecs 

LD A,@PAUSE Suspend execution 
RST 28H Cal 1 the @PAUSE SVC 

Software 116 



@PEOF SVC Number 65 
Position to End Of File 

Positions an open file to the End Record Number (ERN). An end-of-file
encountered error (X'1C') is returned if the operation is successfuL Your pro
gram may ignore this error. 

Entry Conditions: 
A =65 (X'41') 
DE= pointer to FCB of the file to position 

Exit Conditions: 
NZ flag always set 

General: 

If A= X' 1 c; then success. 
If A 4' X'1 c; then failure. 

A= error number 

AF is always altered by this SVC. 

Example: 
See the example for@LOC in Sample Program C, lines 305-311. 

Software 117 



@POSN 
Position Fiie 

SVC Number 66 

Positions a file to a logical record. This is useful for positioning to records of a 
random access file 

When the @POSN routine is used, Bit 6 of FCB + 1 is automatically set This 
ensures that the EOF (End Of File) is updated when the file is closed only if the 
NRN (Next Record Number) exceeds the current ERN (End Record Number) 

Note that @POSN must be used for each write, even if two records are side by 
side 

Entry Conditions: 
A = 66 (X'42') 
DE= pointer to FCB to, the file to position 
BC= the logical record number 

Exit Conditions: 
If Z flag is set or A= X'1 C' or X'1 D; then success. 

The file was positioned. 
Otherwise, failure 

A=t:IIUI IIUIIIUt:::1 

General: 
AF is always altered by this SVC. 

Example: 
See the example for @LOG in Sample Program C, lines 305-311. 

Software 118 



@PRINT SVC Number 14 
Prints Message Line 

Outputs a message line to the printet The line must be terminated with either a 
carriage return (X'0D') or an ETX (X'03} 

Entry Conditions: 
A = 14 (X'0E') 
HL = pointer to message to be output 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

General: 
AF and DE are altered by this SVC, 

Example: 

TEXT: 

LD 

LD 

RST 

DEFB 
DEFM 
DEFB 

HL,TEXT iText to be output to the 
;printer 

A,@PRINT iWrite this Message to the 
;Printer device 

28H iCal! the @PRINT SVC 

0CH iDo a Top of ForM 
'ReP □ rt continued Pa9'e 
3 iTerroinate with a <ET)O or 

ian <ENTER> 

Software 119 



@PRT SVC Numbers 

Send Character to Printer 
Outputs a byte to the line printer 

Entry Conditions: 
A=6 (X'06') 
C = character to print 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

General: 
AF and DE are altered by this SVC 
If the line printer is attached but becomes unavailable (out of paper, out of 

ribbon, turned off, off-line, buffer full, etc.), the printer driver waits approx
imately ten seconds. If the printer is still not ready, a "Device not avail· 
able" error is returned 

Example: 
LO A, (PAGE) iGet the page nu1,1be r 
ADD A, '0' ; Ma~\ e it ASCII 
LO C,A iPut the value here 
LO A,@PRT iWrite this character to the 

;printer 
RST 28H ;call the @PRT s 1.•c 

PAGE: DEFB 2 ;start ,,Ji th page 2 

Software 120 



@PUT SVC Number4 

Write One Byte to Device or File 
Outputs a byte to a logical device or file. The DCB TYPE byte (DCB+ 1/J, Bit 1) 
must permit PUT operation 

Entry Conditions: 
A =4 (X'//J4') 
DE= pointer to DCB or FCB of the output device 
C = byte to output 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

General: 
AF is always altered by this SVC. 

Example: 
See the section "Device Driver and Filter Templates:· 

Software 121 



@RAMDIR SVC Number 35 
Get Directory Record or Free Space 

Reads the directory information of visible files from a disk directory, or gets the 
amount of free space on a disk. 

Entry Conditions: 
A =35 (X'23') 
HL = pointer to RAM buffer to receive information 
B =logical drive number (0-7) 
C selects one of the following functions: 

If C = 0, get directory records of all visible files 
If C = 255, get free space information. 
If C = 1-254, get a single directory record (see below) 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A=error number 

Each directory record requires 22 bytes of space in the buffer. If C = 0, one addi
tional byte is needed to mark the end ot the butter. 

For single directory records, the number in the C register should be one less 
than the desired directory record. For example, if C = 1, directory record 2 is 
fetched and put in the buffer. If a single record request is for an inactive record 
or an invisible file, the A register returns an error code 25 (File access denied). 

The directory information is placed in the buffer as follows: 

Byte Contents 
00-14 filename/ext:d (left justified, padded with spaces) 
15 protection level, 0 to 6 
16 EOF offset byte 
17 logical record length, 0 to 255 
18-19 ERN of file 
20-21 file size in K (1024-byte blocks) 
22 LAST RECORD ONLY: Contains"+" to mark buffer end. 

If C = 255, HL should point to a 4-byte buffer. Upon return, the buffer contains: 

Bytes 00-01 Space in use in K, stored LSB, MSB 
Bytes 02-03 Space available in K, stored LSB, MSB 

Example: 
See the example for @DODIR in Sample Program E, lines 32-40. 

Software 122 



@RDHDR SVC Number 48 
Read a Sector Header 

Reads the next ID header when supported by the controller driver. The floppy 
disk driver supplied treats this as a @RDSEC (SVC 49), 

Entry Conditions: 
A = 48 (X'30') 
HL = pointer to buffer to receive the data 
D = cylinder to read 
C = logical drive number 
E = sector to read 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set. 

A= error number 

Example: 
See the example for @RDSEC in Sample Program D, lines 63-66, 

Software 123 



@RDSEC 
Read Sector 

SVC Number 49 

Transfers a sector of data from the disk to your buffer 

Entry Conditions: 
A =49 (X'31') 
HL = pointer to the buffer to receive the sector 
D = cylinder to read 
E = sector to read 
C =logical d1ive number (0-7) 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

General: 
Only AF is altered by this SVC 

Example: 
See 8Ample Prnarnrn n. linP~ R::1-RR 

Software 124 



@RDSSC SVC Number 85 

Read System Sector 
Reads the specified system (directory) sector II the cylinder number in register 
Dis not the directory cylinder, the value in D is changed to reflect the real direc
tory cylinder and the sector is then read 

Entry Conditions: 
A = 85 (X'55') 
HL = pointer to the buffer to receive the sector 
D = cylinder to read 
E = sector to read 
C =logical drive number (0-7) 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

General: 
Only AF is altered by this SVC 

Example: 
See Sample Program D, lines 78-92. 

Software 125 



@RDTRK 
Read a Track 

SVC Number 51 

Reads an entire track when supported by the controller driver. The floppy disk 
driver supplied treats this as a @RDSEC (SVC 49) and does not do a track 
read. 

Entry Conditions: 
A = 51 (X'33') 
HL = pointe, to butte, to receive the secto, 
D = t,ac~ to read 
C = logical dlive number 
E = secto, to read 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

General: 
.A.F i'3 2!tert:?d b~1 the supplied f!0pp~1 disk dr!ver 

Example: 
See the example for @RDS EC in Sample Program D, lines 63-66 

Software 126 



@READ 
Read a Record 

SVC Number 67 

Reads a logical record from a file. If the LRL defined at open time was 256 
(specified by 0), then the NRN sector is transferred to the buffer established at 
open time. For LRL between 1 and 255, the next logical record is placed into a 
user record buffer, UREC. The 3-byte NRN is updated after the read operation. 

Entry Conditions: 
A =67 (X'43') 
DE= pointer to FCB for the file to read 
HL = pointer to user record buffer UREC (needed if LRL = 1-255; unused if 

LRL=256) 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

Example: 
See Sample Program C, lines 300-304. 

Software 127 



@REMOV SVC Number 57 
Remove File or Device 

Removes a file or devicR 

If a file is to be removed, the File Control Block must be in an open conditiorL 
When this SVC is performed, the file's directory is updated and the space occu
pied by the file is deallocated" 

If a device was specified, the device is closed To remove a device, use the 
REMOVE library command" 

Entry Conditions: 
A = 57 (X'39') 
DE= pointer to FCB or DCB to remove 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

Example: 
See Sample Program C, lines 223-231" 

Software 128 



@RENAM SVC Number 56 
Rename File or Device 

Changes a file's filename and/or extension. 

Entry Conditions: 
A = 56 (X'38') 
DE= pointer to an FCB containing the file's current name 

This FCB must be in a closed state. 
HL=pointer to new filename string terminated with a X'Q/D' or X'Q/3: This 

filespec must be in upper case and must be a valid filespec. You can 
convert the filespec to upper case and check its validity by using the 
@FSPEC SVC before using @RENAM. 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set. 

A= error number 

General: 
After the call is completed, the FCB pointed to by DE is altered. 
Only AF is altered by this SVC 

Example: 
LD DE,FCEl 

LD HL,NEW 

LD A,@RENAM 

RST 28H 

FCEl: DEFS 32 

NEW: DEFM 'NEWNAME/TXT' 

DEFEl !11DH 

Software 129 

;Point at a closed FCEl 
;containind the old 
Hi lesPec 
;Point to the new filespec 
;to use 
;chande the naMe of the 
Hile 
;call the @RENAM SVC 

;A File Control Block used 
;by the @RENAM SVC, In 
;this exal!lP!e, it is 
;assul!led that an @FSPEC 
;svc has loaded a filesPec 
;into the FCEl before the 
;@RENAM SVC is Perforl!led, 
;The new filespec for the 
Hile 
;rerMinate the filesPec 



@REW SVC Number 68 
Rewind Fiie to Beginning 

Rewinds a file to its beginning and resets the 3-byte NRN to 0 The next record 
to be read or written sequentially is the first record of the file. 

Entry Conditions: 
A = 68 (X'44') 
DE= pointer to FCB for the file to rewind 

Exit Conditions: 
Success, Z flag set File positioned to record number 0. 
Failure, NZ flag set 

A= error number 

General: 
AF is always altered by this SVC. 

Example: 
See the example for@LOC in Sample Program C, lines 305-311 

Software 130 



@RMTSK SVC Number 30 

Remove Interrupt Level Task 
Removes an interrupt level task from the Task Control Block table. 

Entry Conditions: 
A=30(X'1E') 
C = task slot assignment to remove (0-11) 

Exit Conditions: 
Success always. 
HL and DE are altered by this SVC. 

Example: 
See Sample Program F, lines 134-142 

Software 131 



@RPTSK SVC Number 31 

Replace Task Vector 
Exits the task process executing and replaces the currently executing task's 
vector address in the Task Control Block table with the address following the 
SVC instruction. Return is made to the foreground application that was 
interrupted 

Entry Conditions: 
A=31 (X'1F') 

General: 
This SVC does not return 

Example: 
LO A,RPTSK 

RST 28H 
NEWADD: DEFW 121 

Software 132 

iRePlace this ta s K with the 
ione located at the 
ifollowin~ address: 
iCall the @RPTSK SVC 
iAddress of the new task i S 

iloaded he re. This word 

ithe @RPTSK SVC, The label 
iNEWADD is Present onlY to 
iallow the address to be 
istored, 



@RREAD 
Reread Sector 

SVC Number 69 

Forces a reread of the current sector to occur before the next 1/0 request is per
formed. Its most probable use is in applications that reuse the disk 1/0 buffer for 
multiple files, to make sure that the buffer contains the proper file sector This 
routine is valid only for byte 1/0 or blocked files. Do not use it when positioned 
at the start of a file. 

Entry Conditions: 
A = 69 (X'45') 
DE= pointer to FCB for the file to reread 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

General: 
AF is always altered by this SVC. 

Example: 
LD DE,FCB ;Point to File Control Block 

;of the file that requires 
Hhe re-read 

LD A,@RREAD ;Before next l/0, reload 
;the current sector into 
;ihe sYsteM buffer for 
Hhis file 

RST 28H ; Ca 11 the @RREAD St.JC 

Software 133 



@RSLCT SVC Number 47 

Test for Drive Busy 
Performs a test of the last selected drive to see if it is in a busy state. If busy, it 
is re-selected until it is no longer busy. 

Entry Conditions: 
A=47 (X'2F') 
C= logical dn"ve number (0-7) 

Exit Conditions: 
Success always. 
Only AF is altered by this SVC. 

Example: 
LD Ct! Test Drive 1 to see if it 

is bus Y. 

LD A,@RSLCT If it i 5 t continue 
selecting it 

RST 28H Call the @RSLCT SVC 

Software 134 



@RSTOR 
Issue FDC RESTORE Command 

Issues a disk controller RESTORE command" 

Entry Conditions: 
A=44 (X'2C') 
C=logica/ drive number (0-7) 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

Example: 

SVC Number 44 

See the example for @CKDRV in Sample Program D, lines 38-39 

Software 135 



@RUN 
Run Program 

SVCNumbern 

Loads and executes a program file. If an error occurs during the load, the sys
tem prints the appropriate message and returns 

Entry Conditions: 
A = 77 (X'4D') 
DE= pointe, to FCB containing the filespec of the file to RUN 
Note: The FCB must be located where the program being loaded will not 
overwrite it 

Exit Conditions: 
Success, the new program is loaded and executed 
Failure, the error is displayed and return is made to your program 

HL=retum code (See the section "Converting to TRSDOS Version 6" 
for information on return codes.) 

General: 
HL is returned unchanged if no error occurred and can be used as a 

r,ointer to fl c:ommf!nd line 

Example: 
See Sample Program A, lines 62-74 

Software 136 



@RWRIT 
Rewrite Sector 

SVC Number 70 

Rewrites the current sector, following a write operation. The@WRITE function 
advances the NRN after the sector is written. @RWRIT decrements the NRN 
and writes the disk buffer again Do not use @RWRIT when positioned to the 
start of a file 

Entry Conditions: 
A =70 (X'46') 
DE= pointer to FCB for the file to rewrite 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

Example: 
LD DE,FCB Point to the File Control 

Blocl; 
LD A,@RWRIT Perforfl\ a re-write of the 

current sector 
RST 28H Call the @RWRIT SVC 

Software 137 



@SEEK 
Seek a Cylinder 

SVC Number 46 

Seeks a specified cylinder and sector. @SEEK does not return an error if you 
specified a non-existent drive or an invalid cylinder. @SEEK performs no action 
if the specified drive is a hard disk. 

Note: Seek of a sector is not supported by TRS-80 hardware. An implied seek 
is included in sector reads and writes 

Entry Conditions: 
A= 46 (X'2E') 
C=logica/ drive number 
D = cylinder to seek 
E = sector to seek 

Exit Conditions: 
Success always 
Only AF is altered by this SVC 

Software 138 



@SEEKSC SVC Number 71 
Seek Cylinder and Sector 

Seeks the cylinder and sector corresponding to the next record of the specified 
file. (This is done by examining the NRN field of the FCB.) No error is returned 
on physical seek errors. 

Entry Conditions: 
A = 71 (X'47') 
DE= pointer to the file's FCB 

Exit Conditions: 
Success always. 

Example: 
LD DE ,FCB Point to the File Control 

Block 
LD A ,@SEEKSC Cause the next sector to be 

SEEKed before it is 
actually needed 

RST 28H Call the @SEEKSC SVC 

Software 139 



@SKIP 
Skip a Record 

SVC Number 72 

Causes a skip past the next logical record. Only the record number contained 
in the FCB is changed; no physical 1/0 takes place 

Entry Conditions: 
A = 72 (X'48') 
DE= pointer to FCB for the file to skip 

Exit Conditions: 
If the Z flag is set or if A= X'1 C' or X'1 o; then the operation was successfuL 

Otherwise, A=error number .. If A=X'1C' is returned, the file pointer is 
positioned at the end of the file Any Appending operations would be 
performed here. If A= X'1 D' is returned, the file pointer is positioned 
beyond the end of the file 

General: 
AF is altered by this SVC 
BC contains the current record number. This is the same value as that 

returned by the @LOG SVC. 

Example: 
See the example for@LOC in Sample Program C, lines 3©5-311. 

Software 140 



@SLCT SVC Number 41 
Select a New Drive 

Selects a drive. The time delay specified in your configuration (SYSTEM 
(DELAY= YIN)) is made if the drive selection requires it ' 

Entry Conditions: 
A=41 (X'29') 
C=logical drive number (0-7) 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set. 

A= error number 

General: 
Only AF is altered by this SVC. 

Software 141 



@SOUND SVC Number 104 

Sound Generation 
Generates sound using specified tone and duration codes. Interrupts are dis
abled during execution. 

Entry Conditions: 
A= 104 (X'68') 
B = function code 

bits 0-2: tone selection (0-7 with 0 = highest and 7 = lowest) 
bits 3-7: tone duration (0-31 with 0 = shortest and 31 = longest) 

Exit Conditions: 
Success always. 

Only AF is altered by this SVC. 

Example: 
See Sample Program B, lines 43-45. 

Software 142 



@STEPI SVC Number 45 
Issue FDC STEP IN Command 

Issues a disk controller STEP IN command. This moves the drive head to the 
next higher-numbered cylinder. @STEPI is intended for sequential read/write 
operations, such as disk formatting. 

Entry Conditions: 
A= 45 (X'2D') 
C=logica/ drive number 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

General: 
Only AF is altered by this SVC 

Software 143 



@TIME 
Get Time 

SVC Number 19 

Gets the system time in display format (HH:MM:SS). 

Entry Conditions: 
A = 19 (X'13') 
HL = pointer to buffer to receive the time string 

Exit Conditions: 
Success always, 

HL = pointer to the end of buffer+ 1 
DE= pointer to start of TIME$ storage area in TR SOOS 
AF and BC are altered by this SVC 

Example: 
See the example for @DATE in Sample Program F, lines 252-253. 

Software 144 



@VDCTL 
Video Functions 

SVC Number 15 

Performs various functions related to the video display. The B register is used 
to pass the function number. 

Entry Conditions: 
A= 15 (X'0F') 
B selects one of the following functions: 

If B = 1, return the character at the screen position specified by HL 
H = row on the screen (0-23), where 0 is the top row 
L = column on the screen (0-79), where 0 is the leftmost column 

If B = 2, display the specified character at the position specified by 
HL 

C = character to be displayed 
H = row on the screen (0-23). where 0 is the top row 
L = column on the screen (0-79), where 0 is the leftmost column 

If B = 3, move the cursor to the position specified by HL. This is done 
even if the cursor is not currently displayed 

H=row on the screen (0-23), where 0 is the top row 
L = column on the screen (0-79), where 0 is the leftmost column 

If B = 4, return the current position of the cursor. 

If B = 5, move a 1920-byte block of data to video memory 
HL = pointer to 192@-byte buffer to move to video memory 

If B = 6, move a 1920-byte block of data from video memory to a 
buffer you supply. In 40 line by 24 character mode, there must 
be a character in each alternating byte for proper display 

HL = pointer to 1920-byte buffer to store copy of video memory HL 
must be in the range X'23FF' < HL < X'EC01 

If B = 7, scroll protect the specified number of lines from the top of the 
screen. 

C=number of lines to scroll protect (0-7). Once set, scroll protect 
can be removed only by executing @VDCTL with B = 7 and 
C = 0, or by resetting the system. Clearing the screen with 
®illl)©lK!!) erases the data in the scroll protect area, but the 
scroll protect still exists 

If B = 8, change cursor character to specified character. If the cursor 
is currently not displayed, the character is accepted anyway 
and is used as the cursor character when it is turned back on 
The default cursor character is an underscore (X'5F') under 
Version 6.2 and a X'B0' under previous versions. 

C = character to use as the cursor character 

If B = 9, (under Version 6 .. 2 only) transfer 80 characters to or from 
the screen 

If C = 0, move characters from the buffer to the screen 
If C = 1 , move characters from the screen to the buffer 
H = row on the screen 
DE= pointer to 8@ byte buffer 

Note: The video RAM area in the Models 4 and 4P is 2048 bytes (2K) 
The first 1920 bytes can be displayed. The remaining bytes contain the 
type-ahead buffer and other system buffers 

Software 145 



Exit Conditions: 
liB= I: 

Success, Z flag set. 
A= character found at the location specified by HL 
DE is altered 

Failure, NZ flag set 
A= error number 

lf8=2: 
Success, Z flag set 

DE is altered 
Failure, NZ flag set 

A= error number 

If 8=3: 
Success, Z flag set 

DE and HL are altered 
Failure, NZ flag set 

A= error number 

If 8=4: 
Success always. 

118=5: 

HL-,uw a11d cv/urnn po;jftfcn cf the c:..:r:Jcr. H rc1.•.1 on the 
screen (0-23), where 0 is the top row; L = column on the 
screen (0-79). where 0 is the leftmost column. 

Success always. 

If 8=6: 

HL = pointer to the last byte moved to the video + 1 
BC and DE are altered 

Success always 
BC, DE, and HL are altered 

If 8=7: 
Success always. 

BC and DE are altered 

118=8: 
Success always. 

A= previous cursor character 
DE is altered. 

If B = 9 (under Version 6.2 only): 
Success, Z flag set 

BC, HL, DE are altered 
Failure, NZ flag set because His out of range 

A= error code 43 (X'28') 

General: 
Functions 5, 6, and 7 do not do range checking on the entry parameters. 
If HL is not in the valid range in functions 5 and 6, the results may be 

unpredictable. 
Only function 3 (B = 3) moves the cursor. 
If C is greater than 7 in function 7, it is treated as modulo 8. 
AF and B are altered by this SVC. 

Example: 
See Sample Program F, lines 304-327. 

Software 146 



@VER SVC Number 73 
Write and Verify a Record 

Performs a @WRITE operation followed by a test read of the sector (if the write 
required physical 1/0) to verify that it is readable 

If the logical record length is less than 256, then the logical record in the user 
buffer UREC is transferred to the file .. If the LRL is equal to 256, a full sector 
write is made using the disk 1/0 buffer identified at file open time 

Entry Conditions: 
A = 73 (X'49') 
DE= pointer to FCB for the file to verify 

Exit Conditions: 
Success, Z flag set 

HL = pointer to user buffer containing the logical record 
Failure, NZ flag set 

A = error number 

General: 
Only AF is altered by this SVC. 

Example: 
See Sample Program C, lines 338-346 

Software 14 7 



@VRSEC 
Verify Sector 

SVC Number 50 

Verifies a sector without transferring any data from disk 

Entry Conditions: 
A=50 (X'32') 
D = cylinder to verify 
E = sector to verify 
C=logica/ dn've number ((,'l-7) 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

General: 
AF is always altered by this SVC. 
If the sector is a system sector, the sector is readable if an error 6 is 

returned; any other error number signifies an error has occurred. 

Examole: 
See the example for @WRSEC in Sample Program D, lines 68·/tL 

Software 148 



@WEOF 
Write End Of File 

SVC Number 74 

Forces the system to update the directory entry with the current end-of-file 
information. 

Entry Conditions: 
A = 74 (X'4A') 
DE= pointer to the FCB for the file to WEOF 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

General: 
AF is always altered by this SVC. 

Example: 
LD DE ,FCB 

LD A ,@WEOF 

RST ZBH 

Software 149 

;Point at the File Control 
iBl □ c~ 
iF □ rce the directory entry 
it □ be uPdated now, 
iinstead of when the file 
iis closed 
iCall the @WEOF SVC 



@WHERE SVCNumber7 

Locate Origin of SVC 
Used to resolve the relocation address of the calling routine 

Entry Conditions: 
A=7 (X'07') 

Exit Conditions: 
Success always 

HL=pointer to address following RST 28H inst1Uction 
AF is always altered by this SVC. 

Example: 
See Sample Program F, lines 36-60 .. 

Software 150 



@WRITE 
Write a Record 

SVC Number 75 

Causes a write to the next record identified in the File Control Block. 

If the logical record length is less than 256, then the logical record in the user 
buffer UREC is transferred to the file_ If the LRL is equal to 256, a full sector 
write is made using the disk 1/0 buffer identified at file open time. 

Entry Conditions: 
A = 75 (X'4B') 
HL = pointer to user record buffer UREC (unused if LRL = 256) 
DE= pointer to FCB for the file to write 

Exit Conditions: 
Success, Z flag set 
Failure, NZ flag set 

A= error number 

General: 
AF is always altered by this svc_ 

Example: 
See the example for @VER in Sample Program C, lines 338-346_ 

Software 151 



@WRSEC 
Write a Sector 

Writes a sector to the disk. 

Entry Conditions: 
A =53(X'35') 

SVC Number 53 

HL = pointer to the buffer containing the sector of data 
D = cylinder to write 
E = sector to write 
C =logical drive number (0-7) 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set. 

A= error number 

General: 
Only AF is altered by this SVC. 

Example: 
See Sample Program u, lines 68-/6. 

Software 152 



@WRSSC SVC Number 54 
Write a System Sector 

Writes a system sector (used in directory cylinder) 

Entry Conditions: 
A =54 (X'36') 
HL = pointer to the buffer containing the sector of data 
D = cylinder to write 
E = sector to write 
C = logical drive number 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set 

A= error number 

General: 
Only AF is altered by this SVC. 

Example: 
See Sample Program D, lines 94-104. 

Software 153 



@WRTRK 
Write a Track 

SVC Number 55 

Writes an entire track of properly formatted data. The data format must conform 
to that described in the disk controller's reference manual. @WRTRK must 
always be preceded by @SLCT 

Entry Conditions: 
A = 55 (X'37') 
HL=pointer to format data 
D = track to write 
C =logical drive number (0-7) 

Exit Conditions: 
Success, Z flag set. 
Failure, NZ flag set 

A= error number 

General: 
Only AF is altered by this SVC. 

Software 154 



Numerical List of SVCs 

Following is a numerical list of the SVCs: 

Dec Hex Label Function 
0 00 @IPL Reboot the system 
1 01 @KEY Scan •Kl device, wait for character 
2 02 @DSP Display character at cursor, advance 

cursor 
3 03 @GET Get one byte from a logical device 
4 04 @PUT Write one byte to a logical device 
5 05 @CTL Make a control request to a logical 

device 
6 06 @PRT Send character to the line printer 
7 07 @WHERE Locate origin of CALL 
8 08 @KBD Scan keyboard and return 
9 09 @KEYIN Accept a line of input 

10 0A @DSPLY Display a message line 
11 0B @LOGER Issue a log message 
12 0C @LOGOT Display and log a message 
13 0D @MSG Message line handler 
14 0E @PRINT Print a message line 
15 0F @VDCTL Position/locate cursor, gel/put char-

acter at cursor 
16 10 @PAUSE Suspend program execution 
17 11 @PARAM Parse an optional parameter string 
18 12 @DATE Get system date in the format MM/ 

DD/YY 
19 13 @TIME Get system time in the format 

HH:MM:SS 
20 14 @CHNIO Pass control to the next module in a 

device chain 
21 15 @ABORT Load HL with X'FFFF' error and goto 

@EXIT 
22 16 @EXIT Exit program and return to TRSDOS 
23 Reserved for future use 
24 18 @CMNDI Entry to command interpreter with 

return to the system 
25 19 @CMNDR Entry to command interpreter with 

return to the user 
26 1A @ERROR Entry to post an error message 
27 1B @DEBUG Enter DEBUG 
28 1C @CKTSK Check if task slot in use 
29 1D @ADTSK Add an interrupt level task 
30 1E @RMTSK Remove an interrupt level task 
31 1F @RPTSK Replace the currently executing task 

vector 
32 20 @KLTSK Remove the currently executing task 
33 21 @CKDRV Check for drive availability 
34 22 @DODIR Do a directory display/buffer 
35 23 @RAMDIR Get directory record(s) or free space 

into RAM 
36-39 Reserved for future use 

40 28 @DCSTAT Test if drive is assigned in OCT 
41 29 @SLCT Select a new drive 
42 2A @DCINIT Initialize the FDC 
43 2B @DCRES Reset the FDC 
44 2C @RSTOR Issue FDC RESTORE command 
45 2D @STEPI Issue FDC STEP IN command 

Software 155 



Dec Hex Label Function 

46 2E @SEEK Seek a cylinder 
47 2F @RSLCT Test if requested drive is busy 
48 30 @RDHDR Read a sector header 
49 31 @RDSEC Read a sector 
50 32 @VRSEC Verify a sector 
51 33 @RDTRK Read a track 
52 34 @HDFMT Hard disk format 
53 35 @WRSEC Write a sector 
54 36 @WRSSC Write a system sector 
55 37 @WRTRK Write a track 
56 38 @RENAM Rename a file 
57 39 @REMOV Remove a file or device 
58 3A @INIT Open or initialize a file or device 
59 3B @OPEN Open an existing file or device 
60 3C @CLOSE Close a file or device 
61 3D @BKSP Backspace one logical record 
62 3E @CKEOF Check for end of file 
63 3F @LOG Calculate the current logical record 

number 
64 40 @LOF ~~~bu~~te the EOF logical record 

65 41 @PEOF Position to the end of file 
66 42 @POSN Position a file to a logical record 
67 43 @READ Read a record from a file 
68 44 @REW Rewind a file to its beginning 
69 45 @RREAD Reread the current sector 
70 46 @RWRIT Rewrite the current sector 
71 47 @SEEKSC Seek a specified cylinder and sector 
72 48 @SKIP Skip the next record 
73 49 @VER Write a record to a file and verify 
74 4A @WEOF Write end of file 
75 4B @WRITE Write a record to a file 
76 4C @LOAD Load a program file 
77 4D @RUN Load and execute a program file 
78 4E @FSPEC Fetch a file or device specification 
79 4F @FEXT Set up a default file extension 
80 50 @FNAME Fetch filename/extension from 

directory 
81 51 @GTDCT Get Drive Code Table address 
82 52 @GTDCB Find specified or first free DCB 
83 53 @GTMOD Find specified memory module 

address 
84 Reserved for future use 
85 55 @RDSSC Read a system sector 
86 Reserved for future use 
87 57 @DIRRD Read directory record 
88 58 @DIRWR Write directory record 
89 Reserved for future use 
90 5A @MUL8 Multiply 8-bit unsigned integers 
91 5B @MUL16 Multiply 16-bit by 8-bit unsigned 

integers 
92 Reserved for future use 
93 5D @DIVS Divide 8-bit unsigned integers 
94 5E @DIV16 Divide 16-bit by 8-bit unsigned 

integers 
95 Reserved for future use 
96 60 @DECHEX Convert decimal ASCII to 16-bit 

binary value 
97 61 @HEXDEC Conver1 a number in HL to decimal 

ASCII 

Software 156 



Dec Hex Label Function 

98 62 @HEXB Convert a 1-byte number to hex ASCII 
99 63 @HEX16 Convert a 2-byte number to hex ASCII 

100 64 @HIGH$ Obtain or set the highest and lowest 
unused RAM addresses 

101 65 @FLAGS Point IY to the system flag table 
102 66 @BANK Check, set, or reset a 32K bank of 

memory 
103 67 @BREAK Set user or system break vector 
104 68 @SOUND Generate sound (tone and duration) 

105-127 Reserved for future use, 

Software 157 



Alphabetical List of SVCs 

Following is an alphabetical list of the SVC labels and numbers: 

Label Dec Hex 

@ABORT 
@ADTSK 
@BANK 
@BKSP 
@BREAK 
@CHNIO 
@CKDRV 
@CKEOF 
@CKTSK 
@CLOSE 
@GMNDI 
@GMNDR 
@GTL 
@DATE 
(iilDCINIT 
@OGRES 
@DCSTAT 
@DEBUG 
@DEGHEX 
@DIRRD 
@DIRWR 
@DIVS 
@DIV16 
@DODIR 
@DSP 
@DSPLY 
@ERROR 
@EXIT 
@FEXT 
@FLAGS 
@FNAME 
@FSPEG 
@GET 
@GTDCB 
@GTDCT 
@GTMOD 
@HDFMT 
@HEXDEC 
@HEX8 
@HEX16 
@HIGH$ 
@INIT 
@IPL 
@KBD 
@KEY 
@KEVIN 
@KLTSK 
@LOAD 
@LOG 
@LOF 
@LOGER 
@LOGOT 
@MSG 

Software 158 

21 
29 

102 
61 

103 
20 
33 
62 
28 
60 
24 
25 

5 
18 
42 
43 
40 
27 
96 
87 
88 
93 
94 
34 

2 
10 
26 
22 
79 

101 
80 
78 
3 

82 
81 
83 
52 
97 
98 
99 

100 
58 

0 
8 
1 
9 

32 
76 
63 
64 
11 
12 
13 

15 
1D 
66 
3D 
67 
14 
21 
3E 
1G 
3G 
18 
19 
5 

12 
2A 
28 
28 
18 
60 
57 
58 
5D 
5E 
22 

2 
0A 
1A 
16 
4F 
65 
50 
4E 

3 
52 
51 
53 
34 
61 
62 
63 
64 
3A 

0 
8 
1 
9 

20 
4C 
3F 
40 
08 
0G 
0D 



Label Dec Hex 

@MUL8 90 SA 
@MUL16 91 5B 
@OPEN 59 3B 
@PARAM 17 11 
@PAUSE 16 10 
@PEOF 65 41 
@POSN 66 42 
@PRINT 14 0E 
@PRT 6 6 
@PUT 4 4 
@RAMDIR 35 23 
@RDHDR 48 30 
@RDSEC 49 31 
@RDSSC 85 55 
@RDTRK 51 33 
@READ 67 43 
@REMOV 57 39 
@RENAM 56 38 
@REW 68 44 
@RMTSK 30 1E 
@RPTSK 31 1F 
@RREAD 69 45 
@RSLCT 47 2F 
@RSTOR 44 2C 
@RUN 77 4D 
@RWRIT 70 46 
@SEEK 46 2E 
@SEEKSC 71 47 
@SKIP 72 48 
@SLCT 41 29 
@SOUND 104 68 
@STEPI 45 2D 
@TIME 19 13 
@VDCTL 15 0F 
@VER 73 49 
@VRSEC 50 32 
@WEOF 74 4A 
@WHERE 7 7 
@WRITE 75 4B 
@WRSEC 53 35 
@WRSSC 54 36 
@WRTRK 55 37 

Software 159 



Sample Programs 
The following sample programs use many oi 
the supervisor calls described in this man
ual. These programs are not meant to be 
examples of the most efficient programming, 
but are designed to illustrate as many super
visor calls as possible, 

Software 160 



Ln # 

/l/l/l/ll 
/l/l/l/12 
/l/l/l/13 
/l/l/l/14 
/l/l/l/15 
/l/l/l/17 
/l/l/l/lB 
/l/l/l/19 
/l/l/ll/l 
/l/l/lll 
/l/l/112 
/l/l/113 
/l/l/114 
/l/l/115 
/l/l/116 
/lf//117 
/l/l/118 
/l/l/ll9 
/l/l/l2/l 
/l/l/121 
/l/l/122 
/l/l/123 
/l/l/l2 4 
/l/l/125 
/l/l/126 
/l/l/l27 
/l/l/128 
/l/l/129 
/l/l/l3/l 
/l/l/l31 
/l/l/l32 
/l/l/l33 
/l/l/l34 
/l/l/l35 
/l/l/136 
/l/l/137 
/l/l/138 
/l/l/139 
/l/l/14/l 
/l/l/141 
/l/l/142 
/l/l/143 
/l/l/144 
/l/l/145 
/l/l/146 
/l/l/147 
/l/l/148 
!H!/149 
/l/l/15/l 
/l/l/151 
/l/l/152 
/l/l/153 
/l/l/154 
/l/l/155 
/l/l/156 
/l/l/15 7 
/l/l/158 
/l/l/l59 
/l/l/l6/l 
/l/l/161 
xl/l/162 
xl/l/163 
/l/l/164 
/l/l/165 
/l/l/166 
/l/l/16 7 

Sample Program A 

Source Line 

This program asks the user whether to run a program 
or debug it and executes the SVCs required to perform 
the chosen action. 

PSECT 5/l/l/lH ;The program begins at x'S/l/l/l' 

Define the equates for the SVCs that will be used. 

@DEBUG: EQU 
@DSPLY: EQU 
@FSPEC: EQU 

27 
1/l 
78 

;Enter the debugger (DEBUG) 
;Display a message 
;Verify a filespec or devspec and 
;load it into a File Control Block 
;Get a character from the keyboard 
;Load a program into memory 
;Execute a program 

@KEY: EQU 
@LOAD: EQU 
@RUN: EQU 

MESSl: DEFM 
DEFB 
DEFM 
DEFB 

PROGRM: DEFM 
DEFB 

FCBl: DEFS 

1 
76 
77 

'Do you wish to RUN this Program or DEBUG it?' 
~AH ;This moves the cursor to the next line 
'Press <ENTER> to RUN or <BREAK> to DEBUG' 
~DH ;Terminate the message string 

'DIREX/CMD' 
/!DH 

32 

;Sample program to debug or execute 
;Terminate the filespec 

;File Control Block for the program 

Get the File Control Block for the program 'DIREX/CMD'. 

START: LD HL,PROGRM 

DE,FCBl 
A,@FSPEC 

;Point at the filespec we want to 
;execute or load into memory 
;Point at the File Control Block 

RUNIT: 

LD 
LD 

RST 

LD 
LD 
RST 

LD 
RST 

CP 
,JR 

28H 

HL,MESSl 
A, @DSPLY 
28H 

A,@KEY 
28H 

/!DH 
Z,RUNIT 

;Perform a validity check on the filespec 
;and copy the filespec into the FCB. 
;Call the @FSPEC SVC 

;Point at our prompting message 
;and print it on the display 
;Call the @DSPLY svc 

;Get the reply from the keyboard 
;Call the @KEY svc 

;Was the character an <ENTER>? 
;If Z was set, then run the program 

If it wasn't an <ENTER>, then we assume it was a <BREAK> and 
load the program and enter the debugger. 

LD 
LD 
RST 

DE,FCBl 
A,@LOAD 
28H 

;Point at the File Control Block 
;and have this program loaded into memory 
;Call the @LOAD svc 

Note that this program must not be overwritten by the program 
we are loading. In this example, it is known that the program 
we are loading starts at x'3/l/l/l' and ends below x'S/l/l/l', 

LD A,@DEBUG 
RST 28H 

Execute the program 

LD DE,FCBl 
LD A, @RUN 

RS'r 28H 

;Now invoke the system debugger, DEBUG 
;Call the @DEBUG svc 
;Note that @DEBUG does not return 

;Point at the File Control Block 
;Tell TRSDOS to load and execute the 
;program 
;Call the @RUN svc 

Software 161 



/lfl,168 
/l/l/l69 
/l/l/l7/l 
/l/l/l71 
/l/,Hl72 
/lfl/l73 
/l/l/l74 
/l/l/l75 
/lfl/l76 

Sample Program A, continued 

;Note that @RUN returns only if it can't 
;find the program 

Note that the program that is loaded by the @RUN svc must not 
overwrite the File Control Block in this program. In this case, 
it is known that the program we are executing starts at x'3/l/lfl' 
and ends below the starting point of this program, x' 5/l/l/l'. 

END S'fART 

Software 162 



/1/1/1/11 
/1/1/1/12 
/1/1/1/13 
/1/1/1/14 
/1/1/1/15 
/1/1/1/16 
/1/1/1/17 
/1/1/1/18 
/1/1/110 
/1/1/111 
/1/1/112 
/1/1/113 
0/1/114 
/1/1/115 
0/1016 
/1/1/117 
/1/1/118 
0/1/119 
il/1/120 
/1/1/121 
0/1/122 
/1/1/123 
/1/1/124 
/1/1/125 
/1/1/126 
0/1/127 
/1/1/128 
/1/1/129 
0/1/13,l 
/1/1/131 
/l/1/132 
/1/1/133 
/1/1/134 
0/l/135 
0/l/l36 
/l/l/l37 
0/1/138 
/l/1/139 
0/l/14/1 
0/1/141 
/l/1/142 
/1/1/143 
/1/1/144 
/l/1/145 
/1/1/146 
/l/1/147 
/1/1/148 
/l/1/149 
0Ml50 
/l/1/151 
/l/l/l52 
/l/l/153 
/1/1/154 
/l/l/155 
/l/1/156 
/l/1/157 
/1/1/158 
/1/1/159 
/l/l/l6/l 
/1/1/161 
/l/1/162 
0/l/l63 
/1/1/164 
/l/1/165 
/1/1/166 
/1/1/167 
/1/1/168 

Sample Program B 

This program accepts numbers from the keyboar1 
and uses them to demonstrate the 
arithmetic and numeric conversion SVCs. 

;It also uses the sound function to produce a tone at the 
;beginning of the program. 

PSECT 3/l/l/lH 

These are the SVCs used in this program. 

@DECHEX:EQU 
@DIVS: EQU 
@DIV16: EQU 
@DSP: EQU 
@DSPLY: EQU 
@EXIT: EQU 
@HEX8: EQU 
@HEX16: EQU 
@HEXDEC:EQU 
@KEY: EQU 
@KEYIN: EQU 
@MUL8: EQU 
@MUL16: EQU 
@SOUND: EQU 

96 
93 
94 
2 
1/l 
22 
98 
99 
97 
1 
9 
9/1 
91 
l/l4 

Other equates. 

NUM5: 
NUM4: 
NUM3: 
NUM2: 
NUMl: 
BRK: 
CCC: 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

5 
4 
3 
2 
l 
8/lH 
/lDH 

;Convert decimal ASCII to binary 
;Perform 8-bit division 
;Perform 16-bit division 
;Display a character 
;Display a message 
; Return to TRSDOS Ready or the caller 
;Convert an 8-bit value to hex ASCII 
;Convert a 16-bit value to hex ASCII 
;Convert a binary value to Decimal ASCII 
;Read a character from *KI 
;Accept an input line from *KI 
;Perform 8-bit multiplication 
;Perform 16-bit multiplication 
;Produce a tone 

;Character code for <BREAK> key 
;Next line position 

;Perform a subroutine 2 times to display prompting messages, key in 
;and display divisor and dividend, convert those numbers to 
;binary for the divide, and position the cursor. 

START: LD 
LD 
RST 
CALL 
LD 
LD 
LD 
CALL 
LD 
LD 
CALL 
CALL 
LD 
LD 

B,51\H 
/\,@SOUND 
28H 
KEYIN 
A,C 
(DIVDll ,A 
HL,MESS9 
DSPLI\Y 
A, (DIVDl) 
C,I\ 
HEXB 
KEYIN 
l\,C 
<DIVRl) ,I\ 

;Make the longest, hiqhest tone 
;Make the noise 

;Perform keyin subroutine for dividend 

;Store the dividend in memory 
;Address of hex message 
;Display hex message 
;Get the divisor into C for conversion 
;from binary to hex 
;Convert the number to hex 
;Perform subroutine for divisor 

;Store the divisor in memory 

;Nqw we are ready to perform the divide on the numbers entered. 

LD 
LD 
LD 
LD 
RST 

C,I\ 
I\, (DIVDll 
E,I\ 
/\,@DIVS 
28H 

;Put the divisor back for the @DIVS SVC 
;Get the dividend into E 
;for the @DIVS SVC 
;Call the @DIVS SVC 

;Now display the answer and the remainder in decimal~ 

LD (I\NSl) ,A ;Store the answer in memory 

Software 163 



flilil69 
/f/l.07/l 
flfl/l71 
fl/l/l72 
flilfl73 
fl/lfl74 
flilfl75 
/J/J/l76 
/Jfl/J77 
/J/J/J78 
ilfl/l79 
flflfl8/J 
/J/Jfl81 
flfl/l82 
fl/Jfl83 
fl/lfl84 
fl/l/l85 
fl/lfl86 
/J/J/,187 
/Jflfl88 
flfl/J89 
flilfl9fl 
il/Jil9l 
ililfJ92 
flilil93 
fl/lil94 
ililil95 
il/Jil96 
/J/J/,197 
/Jil/J98 
fJ/J/199 
ilillil/J 
ilillill 
ilillil2 
ilillil3 
f!illil4 
ilillil5 
ilillfl6 
il/Jl/J7 
ili!lilB 
ili!lil9 
/J/Jllil 
ilillll 
il/J112 
/Jil113 
/J/Jll4 
ilfl115 
fl/lll6 
ililll 7 
il/J118 
ililll9 
ilill2il 
fl/ll21 
ilill22 
ili!l23 
ilill24 
ilill25 
ili!l26 
il/Jl27 
ili!l28 
il/Jl29 
f)/Jl3il 
ilill31 
ilill32 
ilill33 
ilil134 
ilill35 

LD 
f,il 
LD 
CALL 
LD 
LD 
Lb 
CALL 
LO 
CALL 
LD 
LD 
LD 
CALL 

Sample Program B, continued 

A,E 
(RP.Ml l ,A 
HL,MESS3 
DSPLAY 
A, (ANSll 
L,A 
H,il 
HEXDEC 
HL,MESS4 
DSPLAY 
A, (REMl) 
L,A 
H,il 
HEXDEC 

;Get the remainder 
;Store the remninrler in memory 
;Load address of answer message 
;Display the message 
;Get the answer into L for conversion 
;Number to convert 
;Put a ii in the MSB 
;Perform subroutine to display decimal 
;Address of remainder message 
;Display remainder message 
;Put remainder in A for hex conversion 
;Number to convert 
;Put ii in the MSB 
;Display decimal value 

;Now divide with a 16-bit dividend. 

LD 
CALL 
LO 
LD 
LD 
LD 
RST 
LD 
RST 
LD 
LD 
CALL 
LD 
CALL 
CALL 
LD 
LD 
LD 
CALL 
LO 
LD 
LD 
LD 
RST 
LD 
LD 
CALL 
LD 
CALL 
LD 
LD 
LD 
CALL 

HL,MESS6 
DSPLAY 
A, @KEY IN 
HL,BUF6 
B,NUM5 
C,il 
28H 
A,@DECHEX 
28H 
(DIVD2l ,BC 
HL,MESS9 
DSPLAY 
DE, (DIVD2) 
HEX16 
KEYIN 
A,C 
(DIVRl) ,A 
HL,MESS3 
DSPLAY 
HL, (DIVD2) 
A, (DIVRll 
C,A 
A,@DIV16 
28H 
(REMl) ,A 
(ANS2l,HL 
HEXDEC 
HL,MESS4 
DSPLAY 
A, (REMl) 
L,A 
H,/J 
HEXDEC 

;Address of 2nd dividend message 
;Display next message 
;Key in up to 5 digits 
;Store the number 
;Maximum length of number 

;Convert the number to binary 

;Store the dividend 
;Address of hex message 
;Display hex message 
;Put dividend into DE for conversion 
;Convert the number from binary to hex 
;Key in divisor 
;Put the divisor into A 
;Store the divisor in memory 
;Address of answer message 
;Display the message 
;Put dividend into HL 
;Get divisor into C 

;Store the remainder 
;Put the answer into HL 
;Display answer in decimal 
;Address of remainder message 
;Display remainder message 
;Get the remainder 
; into L 
;Put a ii in MSB 
;Convert the remainder to decimal 

;Now try some multiplication of 8 bits. 

LO 
CALL 
LO 
LD 
LD 
LD 
RS·r 
LD 
RST 
LD 
LD 
CALL 
LD 
LD 

HL,MESS8 
DSPLAY 
A,@KEYIN 
HL,BUF2 
8,NUM2 
C,fl 
28H 
A, @DECHEX 
28H 
(MCANDl) ,BC 
HL,MESSlil 
DSPLAY 
A,@KEYIN 
HL,BUF2 

;Address of MULB message 
;Display first multiplicand message 
;Key in a 2-digit number 
;Put it here 
;Maximum number of characters 

;Convert the number to binary for math 

;Store the multiplicand 
;Address of MULB multiplier message 
;Display first multiplier message 
;Key in the multiplier 
;Put it here 

Software 164 

value 



,0,0136 
11/1137 
,0,0138 
ll,0139 
11111411 
,011141 
,011142 
1111143 
,0,0144 
11,0145 
,0,0146 
1111147 
,0,0148 
1111149 
ll,015,0 
11,0151 
11/1152 
1111153 
ll,0154 
11,0155 
,0,0156 
11,0157 
11,0158 
ll,0159 
111116,0 
,0,0161 
1111162 
11,0163 
11,0164 
11,0165 
11,0166 
,0,0167 
11/1168 
ll,0169 
11111711 
1111171 
ll,0172 
,011173 
,0,0174 
,011175 
,011176 
11,0177 
,011178 
11,0179 
11,01811 
1111181 
/llll82 
ll,0183 
1111184 
ll,0185 
1111186 
11/1187 
ll,0188 
,0/ll89 
,0,019,0 
1111191 
,011192 
ll,0193 
ll,0194 
,0,0195 
11,0196 
,0,0197 
,0,0198 
,0,0199 
,0112/l,0 
,0,02,01 
ll,02,02 
,0/l2/l3 

LO 
LD 
RST 
LD 
RST 
LD 
LD 
LD 
RST 

Sample Program B, continued 

B,NUMl 
c,,0 
28H 
l\,@DECHEX 
28H 
(MIERl) ,BC 
HL,MESS13 
l\,@DSPLY 
28H 

;Maximum number of characters 

;Convert the multiplier to binary for math 

;Store multiplier in memory 
;l\ddress of multiplier message 
;Display multiplier message 

;Now multiply the two numbers just entered. 

LD I\, (MCANDl) ;Get the multiplicand into C 
LD C,A 
LD A, (MIERl) ;Get the multiplier into E 
LD E,A 
LD A,@MUL8 
RST 28H 
LD L,I\ ;Put the product into L 
LD H,,0 ;Put ,0 in the MSB 
CI\LL HEXDEC ;Convert the product to decimal 

;Now multiply a 16-bit by an 8-bit. 

LD HL,MESSll 
CI\LL DSPLI\Y 
LD l\,@KEYIN 
LD HL,BUF5 
LD B,NUM4 
LD C,/l 
RST 28H 
LD A,@DECHEX 
RST 28H 
LD (MCAND2) ,BC 
LD HL,MESS12 
CALL DSPLI\Y 
LD l\,@KEYIN 
LD HL, BUF3 
LD B,NUM2 
LD c,.fl 
RS'r 28H 
LD l\,@DECHEX 
RST 28H 
LD (MIERl) ,BC 
LD HL,MESS13 
LO l\,@DSPLY 
RST 28H 
LD HL, (MCAND2) 
LD I\, (MIERl) 
LD C,A 
LD A,@MUL16 
RST 28H 
LD H,L 

LD L,I\ 
LD DE,BUF5 
LD A,@HEXDEC 
RST 28H 
LD /\,CCC 
LD (DE) ,A 
LD HL,BUF5 
LD A,@DSPLY 
RST 28H 
LD HL,MESS14 
LD A,@DSPLY 
RST 28H 
LD /\,@KEY 
RST 28H 

;Address of multiplicand message 
;Display 2nd multiplicand message 
;Enter larger multiplicand 
;Put it here 
;Maximum number of characters 

;Convert the number to binary for math 

;Store the multiplicand in memory 
;Address of multiplier message 
;Display message 
;Enter larger multiplier 
;Put it here 
;Maximum number of characters 

;Convert the number to binary for math 

;Store the multiplier in memory 
;Address of product message 
;Display the message 

;Put multiplicand into HL 
;Get the multiplier into C 

;Multiply the two numbers 

;Get the 2nd byte of the product into 
;H for conversion 
;Get the LSB into L for conversion 
;Convert the high-order byte to decimal 
;for the display 

;Tell the display when to stop 

;Display the product 

;Address of end message 
;Display end message 

;Allow the user to enter any character 
;or hit <BREI\K> 

Software 165 



/l/l2/l4 
/J/J2/J5 
/Jj/2/J6 
/Jj/2j/7 
/Jj/2/JS 
/Jj/2/J9 
/Jj/21/J 
/J/J211 
j/j/212 
/J/!213 
j/j/214 
/Jj/215 
j//J216 
/Jj/217 
j/j/218 
/JJ/219 
j/j/22j/ 
j/j/221 
J//l222 
/Jj/223 
/J/!224 
/Jj/225 
j/j/226 
00'227 
/Jj/228 
j/j/229 
/Jj/23/l 
/Jj/231 
j/j/232 
j/j/233 
/Jj/234 
j/j/235 
j//J236 
/lj/237 
/Jj/238 
j//J239 
/JJ/24/l 
j//J241 
j/j/242 
j/j/24 3 
j/j/244 
j/j/245 
j/j/246 
/Jj/247 
flj/248 
/Jj/249 
j/j/25/l 
/Jj/251 
jlj/252 
j/jl25 3 
jlj/254 
jlj/255 
jljl256 
j/j/257 
J//l258 
j/jl259 
/Jj/26/l 
j/j/261 
j/j/262 
jlj/26 3 
fljl264 
j/jl265 
jljl266 
j/j/267 
j/j/268 
fljl269 
j/j/27j/ 
j/j/271 

CP 
JP 
LD 
RST 

Sample Program B, continued 

BRK 
NZ, START 
A,@EXIT 
28H 

Is it <BREAK>? 
Yes, go back to beginning 
No, exit the program 

These are the subroutines used by the calls to 
display a message, key in a 3-digit number, and convert it 
from decimal to binary. 

KE'lIN: LO 
CALL 
LD 
LO 
LO 
LO 
RST 
LO 
RST 
RET 

HL,MESSl 
DSPLAY 
HL,BUF4 
B,NUM3 
C,/l 
A,@KEYIN 
28H 
A, @DECHEX 
28H 

;Display message 
;Put the number here 
;Maximum number of characters 

;Key in a number 

;Convert the number to binary 

;Return to next sequential instruction 

;Display what was loaded into HL before the call. 

DSPLAY: LO 
RST 
DEC 
LO 

DSPLYLP:LD 
LO 
RST 
DJNZ 
RET 

A,@DSPLY 
28H 
HL 
B, (HL) 
c, I t 

A,@DSP 
28H 
DSPL\'LP 

;@DISPLAY SVC 

;Set HL back to blank byte 
;Load B with the number of bytes 
;Put a blank into C 
;Display the blank 
;until the correct number 
;of blanks have been displayed 
;Return to next instruction 

;Convert 1 byte to hexadecimal. 

HEX8: LO 
LO 
RST 
LO 
LD 
LD 
LO 
RST 
RET 

A,@HEX8 
HL,BUF3 
28H 
A,CCC 
(HL) ,A 
A,@DSPLY 
HL,BUF3 
28H 

;Convert 1 byte to hex ASCII 
;Put the converted value here 

;Tell display when to stop 
;Put CCC at end of buffer 
;Display the hex value 

;Return to next instruction 

,convert 2 bytes to hexadecimal. 

HEX16: LO 
LO 
RST 
LO 
LO 
LO 
LO 
RST 

A,@HEX16 
HL,BUF6 
28H 
A,CCC 
(HL) ,A 
A,@DSPLY 
HL,BUF6 
28H 

;Convert a 2-byte number to hex ASCII 
;Put the converted value here 

;CCC at end of buffer so display 
;knows when to stop 
;Display the converted value 
;Address of converted value 

RET ;Return to next instruction 

;Convert from binary to decimal and display decimal value. 

HEXDEC: LD 
LO 
RST 
LD 
LO 
LD 
LD 
RST 
RET 

A,@HEXDEC 
DE,BUF5 
28H 
A,CCC 
(DE) ,A 
A,@DSPLY 
HL,BUF5 
28H 

;Convert from binary to decimal 
;Put converted value here 

;CCC at end of buffer so display 
;knows when to stop 
;Display the hex value 
;It's here 

;Return to next instruction 

Software 166 



flfl272 
flfl273 
flfl274 
flfl275 
flfl276 
flfl277 
flfl278 
flfl2 7 9 
flfl28fl 
flfl281 
flfl282 
flfl283 
flfl284 
flfl285 
flfl286 
flfl287 
flfl2 8 8 
flfl289 
flfl29fl 
flfl291 
flfl292 
flfl293 
flfl294 
flfl2 95 
flfl296 
flfl297 
flfl298 
flfl299 
flfl3flfl 
flfl3fll 
flfl3fl2 
flfl3fl3 
flfl3fl4 
flfl3fl5 
flfl3fl6 
flfl3fl7 
flfl3fl8 
flfl3fl9 
flfl31fl 
flfl311 
flfl312 
flfl313 
flfl314 
flfl315 
flfl316 
flfl317 
flfl318 
flfl319 
flfl32fl 
flfl321 
flfl322 
flfl323 

Sample Program B, continued 

;These are the storage declarations. 

BUF6: 
BUF5 
BUF4: 
BUF3: 
BUF2: 
DIVRl: 
DIVDl: 
ANSl: 
REMl: 
MCANDl: 
MIERl: 
MCAND2: 
DIVD2: 
ANS2: 

DEFS 
DEFS 
DEFS 
DEFS 
DEFS 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFB 
DEFW 
DEFW 
DEFW 

;Below are messages and prompting text used in the program. 

DEFB 
MESSl: DEFM 

DEFB 
DEFB 

MESS3: DEFM 
DEFB 
DEFB 

MESS4: DEFM 
DEFB 
DEFB 

MESS6: DEFM 
DEFB 
DEFB 

MESS8: DEFM 
DEFB 
DEFB 

MESS9: DEFM 
DEFB 
DEFB 

MESS lfl: DEFM 
DEFB 
DEFB 

MESSll: DEFM 
DEFB 
DEFB 

MESS12: DEFM 
DEFB 

MESS13: DEFM 
DEFB 

MESS14: DEFM 
DEFB 

END 

13 ;Number of blanks to print after message 
'Enter a number (1-255) .' 
3 ;Message-terminating character 
21 ;Number of blanks to print after message 
'The answer is' 
3 ;Terminating character 
18 ;Blanks after message 
'The remainder is' 
3 ;Terminating character 
6 ;Blanks after message 
'Enter a number (4369-65535) .' 
3 ;Terminating character 
15 ;Blanks after message 
'Enter a number (1-28).' 
3 ;Terminating character 
16 ;Blanks after message 
'In hex ASCII, that is' 
3 ;Terminating character 
17 ;Blanks after message 
'Enter a number (1-9) .' 
3 ;Terminating character 
11 ;Blanks after message 
'Enter a number (l-4lflfl) .' 
3 ;Terminating character 
15 ;Blanks after message 
'Enter a number (1-15).' 
3 ;Terminating character 
'The product of those 2 numbers is ' 
3 ;Terminating character 
'Press <BREAK> to end or any other key to continue. 
~DH ;Terminating character 

s·rART 

Software 167 



Ln .# 

il/,1/,1/ll 
/l/,1/,1/,12 
/,1/,lf//,13 
/,1/,1/,1/,14 
/l/l/l/,15 
/1/,1/,1/,16 
/l/l/,1/,18 
/l/l/l/l9 
/,1/lf/1/,1 
/lf//lll 
/lfJ/112 
/l/,1!,113 
/l/l!,114 
/,1/,1/,115 
f,1/,lf/16 
/,1/,1/,117 
/l/l/ll8 
/,1!,l/ll9 
/l/l!,12/,1 
/,1/l/l21 

~~~~~ 
µpp,J

/,1/,1/l24
/l/l/l25
/l/l/l26
/l/l/l27
/l/l/l28
/l/l/l29
/l/lf/3/,1
/,l/,1!,131
/l/l/l32
/l/l/l3 3
il/lf/34
/l/l/l35
/,l/,lf/36
/l/lf/37
/l/l/l38
/l/l/l39
/l/l/l4/,1
/l,1/,141
/1,1/,142
/1,1/,143
/,1/,1/l44
/l/l/l45
/l/,lf/46
/l/,lf/47
/lfJ/l48
/,1/l/l49
/,1/,1/lS/,1
/,l/l!,151
/,l/,1!,152
/l/l/l53
/lfJ/l54
/l/l/l55
/,1/l/l56
il/l/l57
fl/l/l58
/l/l/l59
/,1/l/l6/l
fl/l/l61
/l/l/l62
fl/l/l63
fl/l/l64
/l/l/l65
/l/l/l66
flfl/l67

Sample Program C

Source.' I.line ~1
1

This program prompts for two filenames, opens the first
file, and creates the second. Then the data in the first
file is copied to the second file. While the Copy progresses,
the current record number is displayed in parentheses.

PSECT 3/,1/,1/,lH ;This program starts at x' 3/l/,l/l'

First, declare the equates for the SVCs we intend to use.
This is not mandatory, but it makes, the program easier to follow.

@CLOSE: EQU
@DIRRD: EQU
@DSP: EQU
@DSPLY: EQU
@ERROR: EQU
@EXIT: EQU
@FEXT: EQU
@FNAME: EQU
@FSPEC: EQU
@HEX DEC: EQU
@INIT: EQU
t:'L'I.UIJ. EQU
@KEYIN: EQU
@LOC: EQU
@OPEN: EQU
@READ: EQU
@REMOV: EQU
@VER: EQU

6/l
87
2
1/1
26
22
79
8/,1
78
97
58

9
63
59
67
57
73

;Close a file or device
;Read a directory record
;Display character at cursor
;Display a message
;Display an error message
;Exit and return to TRSDOS or the caller
;Add a default file extension
;Fetch a filespec from the directory
;Verify and load a filespec into the FCB
;Convert a binary value to decimal ASCII
;Open an existing file or create a new file
.r-~~ Lh- 1--;~~--~ ~~- - -h~-~~L~~

;Accept a line of text from the *KI device
;Return the current logical record number
;Open an existing file
;Read a record from an open file
;Delete a file from disk
;Write a record to disk. Does the same thing
;as @WRITE (Svc 75), but it also makes sure
;the written data is readable.

First, prompt for the source filespec using the @DSPLY svc.

BEGIN: LD
LD
RST

HL,MESGl
A,@DSPLY
28H

;Get the first message
;Display a line on the screen
;Call the @DSPLY SVC

Now, read the filename from the keyboard using the @KEYIN svc.

LD
LD
LD
LD
RST
JP
JP

LD
OR
JR

HL,FILEl
B,24
C,/1
A,@KEYIN
28H
C,QUIT
NZ,ERR

A,B
A
Z,BEGIN

;Put the name of the 1st file here
;Allow up to 24 characters
;A zero is required by ~he svc
;Get a filename from the user
;Call the @KEYIN SVC
;The user pressed <Break>
;An Error occurred

;Get the number of characters
;See if that value was zero
;Nothing was entered, ask again

The user has typed something, so it must be checked for validity
using the @FSPEC SVC.

LD
LD

LD

RST
JR

HL,FILEl
DE,FCBl

A,@FSPEC

28H
Z,ASK2

;Point at the text the user entered
;Point at the File Control Block
;that is to be used for the source file.
;The @FSPEC svc will make sure the filename
;that is in buffer named 11 filel 11 is valid.
;If it is, it is copied into the File
;Control Block (FCB) to be used by the @OPEN
;or @INIT SVC later on.
;Call the @FSPEC svc
;The name for file 1 is ok, so skip this

At this point the filename specified for file l has been found

Software 168

/l,//l68
/l,//l6 9
/l/l/l7/l
/l/l/l71
/l/l/l72
/l/l/l73
/l/l/l74
/l,//l75
/lJ1/J76
/l/J/l77
/l,//l7 8
f/li//l79
/l/l/J8/l
/l/J/l81
/l/l/l82
/l/l/l83
/lJ;//l84
/l/l/l85
/lf//l86
/l/l/l87
/l/l/l88
/l/l/l89
/l/l/l9/l
/l/l/l91
/l/l/l92
/l/J/l93
/l/l/l94
/l/l/l95
/l,//l96
/l/l/l97
/l/J/l98
/l/l/l99
/l/ll/l/J
/lf/1/ll
/l/ll/l2
/l,/l/l3
/lf/l/l4
/l/ll/l5
/lJ;/l/l6
/lJ;/l/l7
/l/Jl/l8
/l/ll/l9
/l/lll/l
/l/llll
/l/lll2
/l/lll3
/llJ'll4
/l/lll5
/l,/116
/l/lll 7
/lf/118
/l/lll9
/l/ll2/l
/l/ll21
/l/ll22
/llJ'l23
/l/ll24
/l/ll25
/l/!126
/l/ll27
/l.f/128
/l/ll29
/lf/13/l
/l/ll31
/l/ll32
/lf/133
/l/!134
/l/!135

ASK2:

F20K:

FDIV:

EXTN:

Sample Program C, continued

to be in an invalid format. The following code will print the
error message.

LD
LD
RST
JR

HL,BADFIL
A,@DSPLY
28H
BEGIN

;Point at the bad filename message
;Display it
;Call the @DSPLY SVC
;Start over

At this point, the source filename appears to be valid.
The code below asks for the second filename and checks it for
validity also.

LD HL,MESG2 ;Prompt for the target filename
LD A,@DSPLY ;Print that on the screen
RST 28H ;Call the @DSPLY SVC
LD HL,FILE2 ;Put the name of the 2nd file here
LD 8, 24 ;Allow up to 24 characters
LD C,/l ;A zero is required by the SVC
LD A,@KEYIN ;Get a filename from the user
RST 28H ;Call the @KEYIN svc
JP C,QUIT ;The user pressed <Break>
JP NZ,ERR ;An Error occurred

LD A,B ;Get the number of characters
OR A ;See if that value was zero.
JR Z,ASK2 ;Nothing was entered, ask again

The user has typed something, so it must be checked for validity
using the @FSPEC SVC.

LD HL,FILE2
LD DE, FCB2
LD A, @FSPEC
RST 28H
JR Z,F20K

The name for file

LD HL,BADFIL
LD A,@DSPLY
RST 28H
JR BEGIN

;Point at the text the user entered
;Point at the File Control Block
;Check the name for validity
;Call the @FSPEC SVC
;The name for file 2 is ok, so skip this

is invalid so print an error message

;Point at the bad filename message
;Display it
;Call the @DSPLY SVC
;Star~ over

Now we will attempt to add an extension to the target file
if the user did not specify one. We use the extension that
was specified on the source file. If it does
not have one, then we wi 11 not try to add one to the target file.

LD

LD
CP
JR
CP
JR
CP
JR
INC
JR

INC
LD
LD
RST

HL,FCBl+l

A, (HL)
'/'
Z,EXTN
f!DH
Z, NOEXT
f!3H
Z,NOEXT
HL
FDIV

HL
DE,FCB2
A,@FEXT
28H

;Point at the source filename
;We start with the second character since
;the filename must be at least one character
;Get a character from the filespec
;Is the character the extension prefix?
;Yes, this will be our default extension
;Have we reached the end of the filespec?
;Yes, there is no extension so don't add one
;Test both terminators

;Advance the pointer to the next character
;Keep looking

;Advance pointer to first byte of extension
;Point at FCB for the target file (file 2)
;Add an extension if one is not present
;Call the @FEXT SVC

Now we have two filenames. First we will open the source file
to make sure it exists.

Software 169

illll36
.0iil37
.0.0138
.0,0139
.0,014.0
.0,0141
.0.0142
.0.0143
.0.0144
.0.0145
.0.0146
.0.0147
.0.0148
.0.0149
.0.015.0
.0,0151
.0.0152
.0.015 3
.0.0154
.0.0155
.0.0156
.0.0157
.0.0158
0'0'159
.0.016.0
.0.0161
.0.0162
.0.016 3
.0.0164
.0.0165
.0.0166
.0.0167
.0.0168
.0.0169
.0.017.0
.0.0171
.0.0172
.0.017 3
.0,017 4
.0.0175
.0.0176
.0.0177
011178
.0.0179
.0.018,0
.0.0181
.0.0182
.0.018 3
.0.0184
.0.0185
.0.0186
.0.0187
.0.0188
.0.0189
.0,019.0
.0.0191
.0.0192
.0.0193
,0j;ll94
.0,0195
j;lj;l196
.0.0197
.0.0198
j;l,0199
,0,02j;l,0
.0.02.01
.0.02j;l2
j;lj;l2,03

Sample Program C, continued

NOEX'l': LD DE,FCBl
HL,BUFl

;Point at the File Control Block for filel
;Point at the system buffer. This buffer
;is used by the system to block data that
;is written to disk and de-block data that
;is read from disk when the Logical Record
;Length of the file is not 256. If it is
;256, then this buffer is not used •

SIZ:

LD

LD

LD
RST
JR
CP
JP

B,,0

A,@OPEN
28H
Z,SIZ
42
NZ,ERR

;Use LRL 256 for now since we don't know
;what to use yet .
;Open the file
;Call the @OPEN SVC
;The file opened and is LRL 256 .
;Was the error a LRL Open Fault?
;No, perhaps the file does not exist .

At this point, the file is open and we can now examine the
directory to find out what LRL it was created with so we can
use that value to make the copy .

LD

AND
f,[)

LD

LD
PUSH
LD
RST

POP
LD
RST

LD
LD

LD

A,(FCB1+6)

7
r.A
A, (FCB1+7)

B,A
BC
A,@CLOSE
28H

BC
A,@DIRRD
28H

IX,HL
A, (IX+4)

(LRL) ,A

;Get the byte in the FCB which contains
;the drive number the file is on
;Erase all other information in that byte
:SRve thRt val11e hAre
;This reads the Directory Entry Code (DEC)
;out of the FCB so we can use it
;Store the DEC here
;Save that value for now
;We can close the source file for now
;Call the @CLOSE SVC

;Get the DEC value back off the stack
;Read the directory record for that file
;Call the @DIRRD svc

;Put the pointer to the directory record
;here and read the DIR+4 entry which
;contains the LRL of the source file .
;Save that value

Before we go any further, we should check to see if the target file
already exists •

LD
LD
LD
LDIR

LD
LD
LD
LD
RST
JR
CP
JR

DE,COPY
HL,FCB2
BC, 32

DE,FCB2
HL,BUF2
B,,0
A,@OPEN
28H
Z, EXIS'rS
42
NZ,NOFILE

;First, make a copy of the FCB
;in case we have to delete a file
;Move the entire block

;Point at the target File Control Block
;Use this as the buffer for now
;Use LRL 256 for now
;Open it and see if it is there
;Call the @OPEN SVC
;The file already exists, better ask
;Was the error a LRL mismatch?
;No, so the file does not exist .

EXIS'rS: LD

LD
RST

HL,FEXST

A,@DSPLY
28H

;Point at a prompt asking if it is ok
;to erase the file that already exists
;Print that message
;Call the @DSPLY SVC

WAIT: LD
RS'r
JR

CP
JR

A,@KBD
28H
NZ,WAIT

'Y'
Z,KILLIT

;Wait for the user to type Y or N
;Call the @KBD SVC
;Loop until something is typed

;Was a 1 Y1 typed?
;Then kill the file

Software 170

/l/12/14
/li,2/15
/liJ2iJ6
/liJ2/l7
/liJ2iJB
/l/l2i,9
/l/121/l
/li,211
iJ/1212
/li,213
/l/1214
/li,215
/liJ216
/l/1217
/l/1218
/l/1219
/l/122/l
iJ/1221
/l/1222
/l/1223
/l/1224
/l/1225
/l/1226
/l/1227
/l/1228
Jl/1229
Jl/l23i,
Jljl231
Jl/1232
/l/1233
JlJl234
Jl/1235
Jl/1236
Jljl237
Jljl238
Jl/1239
/l/124/l
/l/1241
/l/1242
Jl/1243
Jl/1244
Jl/1245
/l/1246
Jl/1247
Jl/1248
Jl/1249
Jl/125/l
Jl/1251
Jl/1252
Jl/1253
Jl/1254
/l/1255
Jl/1256
Jl/1257
Jl/1258
Jljl259
Jl/126/l
Jl/1261
Jl/1262
Jl/1263
Jljl264
Jl/1265
Jl/1266
Jl/1267
Jl/1268
/l/1269
/l/127/l

SHUT:

CP
JR
CP
JR
CP
JR

LD
LD
RS'f
JP

Sample Program C, continued

'y'
Z,KILLIT
'N'
Z,SHUT
'n'
NZ,WAIT

DE,FCB2
A,@CLOSE
28H
QUIT

;Check for lowercase too

;Do they want to leave the file alone?
;No, just close the file and quit
;Was it a lowercase 'N'?
;No, loop until we see something we like

;Close the target file

;Call the @CLOSE SVC
;Exit to TRSDOS

At this point, we have been given the OK to delete the file
that has the same name as the target file.

KIL LIT: LD
LD
RST

LD
LD
RST

JP

LD
LD
LD
LDIR

C,JlDH
A,@DSP
28H

DE,FCB2
A,@REMOV
28H

NZ,ERR

HL,COPY
DE,FCB2
BC,32

;First move display to a new line
;Display an <Enter>
;Call the @DSP SVC

;Point at the target file's FCB
;Delete the file from disk
;Call the @REMOV svc. (This is the same
;as the @KILL call on other TRSDOS systems.)
;An error occurred, print it and quit
;Note that after a @REMOV succeeds,
;the filespec is removed from the FCB.
;So we have to keep a copy around
;in case we need it.
;Get the copy
;Put it here
;Move up to 32 bytes
;Copy the FCB so we can continue

Now we know what Logical Record Length (LRL) to use in the
copy, so we can open the source file and create the target file
with the correct record lengths.

NOFILE: LD
LD
RST
LD
LD
RST

LD
LD
LD
LD
LD
RST
JP

LD
LD
RST

LD
LD
CP
JR
LD
JR

LRL256: LD

LRLCOM: LD
LD

HL,FCBl
A,@DSPLY
28H
HL,SPACES
A,@DSPLY
28H

DE,FCBl
HL,BUFl
A, (LRL)
B,A
A,@OPEN
28H
NZ,ERR

HL,ARROW
A,@DSPLY
28H

DE,FCB2
A,(LRL)
Jl
Z,LRL256
HL,BUF2
LRLCOM
HL,BUFl

B,A
A,@INIT

;Point at the filename in the PCB
;Print that name
;Call the @DSPLY SVC
;Point at some spaces
;Space over a few places on the screen
;Call the @DSPLY SVC

;Point at File Control Block for source file
;Put data in this
;Read the Logical Record Length
;Load the Logical Record Length
;Open the source file
;Call the @OPEN svc
;Open failed

;Point at the arrow text
;Print that to show the direction of copy
;Call the @DSPLY SVC

;Point at File Control Block for target file
;Get the Logical Record Length
;Is the LRL 256?
;Then we do something special
;Use a different buffer for target file
;Jump to common code
;We use the same buffer when the LRL is 256
;since there is no need to block and de-block
;the data.
;Load the Logical Record Length
;Open the target file

Software 171

jljl271
/J/J272
,0Jl273
Jljl274
,0Jl275
jljl276
jljl277
jljl278
Jljl279
,0Jl28jl
jljl281
Jljl282
,0jl283
jljl284
,0Jl285
Jljl286
jljl287
jljl288
jljl289
,0Jl29jl
jljl291
jljl292
Jljl293
jljl294
.0.0295
.0Jl296
jljl297
,0Jl298
jljl299
jljl3jljl
jljl3jll
jljl3jl2
.0Jl3jl3
jljl3jl4
.0Jl3jl5
jljl3jl6
jljl3jl7
,0Jl3jl8
jljl3jl9
Jl/131/1
jljl3ll
,0Jl312
jljl313
,0Jl314
Jl/1315
,0jl316
,0Jl317
,0Jl318
,0,0319
/1/132/1
,0Jl321
/!Jl322
,0Jl323
,0Jl324
/1/1325
,0Jl326
,0Jl327
/1/1328
,0/1329
,i!jl33jl
,0Jl331
,0/1332
/1/1333
,0Jl334
,l!Jl'335
jljl336
/1/1337
jljl338

LOOP:

EDIT:

NUMBR:

RST
JR

LD

LD
LO
LD
AND
LD
LD
RST
LD
LD
RST

LO
LO
RST

Sample Program C, continued

28H
l'J7. 1 F.RR

OE,FILE2

A, (FCB2+7l
B,A
A, (FCB2+6l
7
C,A
A,@FNAME
28H
HL,FILE2
A,@DSPLY
28H

HL,SPACES
A,@DSPLY
28H

;Call the @INIT SVC
:Init failed

;We are going to get the filename for
;the target file from the system
;instead of using the one we have. The
;reason for this is that the system will
;append the drive number to the filename
;if one was not specified.
;Get the Directory Entry Code for the file
;Put the DEC here
;Get the Drive Number from the FCB
;Lose all data except the drive number
;Store drive number here
;Have the system produce a filespec
;Call the @FNAME SVC
;Now point at the filespec produced
;and print it out
;Call the @DSPLY SVC

;Space over a few more places
;so the display will look neat
;Call the @OSPLY SVC

At this point, both files are open and ready to be used .
The following code reads a record from the source file
and writes it to the target file. This is done until an
end of file is encountered.

LD OE,FCBl ;Point at file 1 (source file)
LD HL,BUFFER ;Put data here
LD A,@READ ;Read a record from the source file
RST 28H ;Call the @READ SVC
JR NZ,EOF ;Jump if the eof has been reached
LD DE,FCB2 ;Point at file 2 (target file)

Before writing the record, display the record number, which
is obtained from the @LOC svc.

LD
RST

PUSH
POP
LD
LD
RST

LD
LD
CP
JR
INC
JR

DEC
LD
LD

LD
LD
RST

A,@LOC
28H

BC
HL
OE,LOCMSG+l
A,@HEXDEC
28H

A, f I

HL,LOCMSG
(HL)
NZ,NUMBR
HL
EDIT

HL
A, f (I

(HL) ,A

HL,LOCMSG
A,@DSPLY
28H

;Get the current record number
;Call the @LOC SVC

;Get the current record number
;and put it in register HL
;Store the result here.
;Convert binary to ASCII in decimal format
;Call the @HEXOEC SVC

;Get a blank
;Look at the front of the buffer
;Is the character a blank?
;A number has been found
;Advance the pointer
;Loop until we find a number

;Back up one position
;Get the character we want to insert
;Store that character.
;The buffer now contains
;<none or more spaces>(record number)
;<7 left-cursor characters><etx>
;Point at this text
;and display it on the screen
;Call the @DSPLY SVC

Now write the record to the target file.

LD OE,FCB2 ;Point at the FCB for the target file

Software 172

jl,0339
jl,034,0
,lJl341
jljl342
jljl343
jl,0344
jlJl345
jlJl346
jljl347
,0,0348
jljl349
Jl,035,0
jl,0351
jljl352
jlJl353
,lJl354
jlJl355
,0,0356
jl,0357
jljl358
jl,0359
jl,036,l
,0,0361
,0,0362
,0,036 3
Jl.0364
,lJl365
.0Jl366
,0,0367
.0Jl368
,0Jl369
,0,037,l
jl,0371
Jl!l372
,0jl373
JlJl374
,0,0375
Jlll376
Jlll3 77
ll.0378
ll.0379
.01138,l
,0,0381
,0,0382
ll.0383
,0,0384
Jlll385
jl,0386
Jlf/387
Jlf/388
Jlf/389
Jlf/39,l
Jlf/391
Jljl3 92
Jlf/393
f/0'394
f/0'395
Jlf/396
Jlf/397
0'0'398
Jljl399
llJl4Jl.0
Jljl4Jll
,0,04Jl2
f/0'4.03
,00'4,04
,0,04Jl5

LD
LD

RST
JR

JR

Sample Program C, continued

HL,BUFFER
A,@VER

28H
NZ,ERR

LOOP

;Point at the data read from file 1
;Write a record to the target file
;The @VER does the same thing as the
;@WRITE svc, only it also checks the
;data to make sure it is readable~
;Call the @VER SVC
;An error occurred on write; possibly
;the disk is full,
;Loop until an error occurs.

This code checks the error to make sure it was an end of file
condition and, if so, closes the source & target files.

EOF: CP
JR
CP
JR

28
Z,EOFYES
29
NZ,ERR

;Was it an end of file encountered?
;Yes, close the file
;Was it "Record number out of range 11 ?
;No, must be some other error

It is possible to get Error 29 if the file being copied has
an EOF that is not a multiple of the file's LRL

EOFYBS: LD
LD
RST
JR

QUIT:

LD
LD
RST
JR

LD
LD
RST

LD
RST

DE, FCBl
A,@CLOSE
28H
NZ,ERR

DE, FCB2
A,@CLOSE
28H
NZ,ERR

HL,OK
A,@DSPLY
28H

A,@EXIT
28H

;Point at file 1 (source file)
;Close the file
;Call the @CLOSE SVC
;An error occ~rred,. fbort

;Point at file 2 (target file)
;Close it also
;Call the @CLOSE SVC
;An error occurred, abort

;Print a message saying the copy is done

;Call the @DSPLY svc

;Exit to TRSDOS or the calling program
;Call the @EXIT SVC

The @EXIT svc does not return.

ERR: OR

LD
LD
RST

,04,0H

C,A
A,@ERROR
28H

;Turn on bit 6, which
;will cause the @ERROR SVC to print
;the short error message. Bit 7
;is not set, which instructs the @ERROR
;to abort this program and return to
;TRSDOS Ready.
;Put error code & flags in register C
;Call the system error displayer
;Call the @ERROR SVC

Because bit 7 is not set, the @ERROR svc will not return.

Storage Declaration

SPACES:

ARROW:

OK:

MESGl:

DEFM
DEFB
DEFM
DEFB
DEFB
DEFM
DEFB
DEFM
DEFB

MESG2: DEFM
DEFB

FEXST: DEFM
DEFB

'=>
3
1,0%25
'[Ok]'
f/DH
'Copy Filespec
3
'To Filespec >'
3

;ASCII Space char.for display formatting

;Arrow for display shows data direction

;Advance cursor 1~ spaces without erasing
;Used to indicate the Copy is complete
;Terminated with an <Enter>

>'

'Destination File Already Exists - Ok to Delete it (Y/N)
3

Software 173

/H/4/16 BADFIL: DEFM
pp4p7 DEFB
ll/l4/18 LOCMSG: DEFM
/1/14/19
ll/141/l DEFB
/1/1411 DEFB
ll/1412
11/1413 FILEl: DEFS
ll/l414 FILE2: DEFS
/l'/1415 FCBl: DEFS
ll/l416 FCB2: DEFS
ll/l417 COPY: DEFS
ll/l418 LRL: DEFB
ll/l419
ll/l42/l BUFl: DEFS
/1/1421 BUF2: DEFS
ll/1422 BUFFER: DEFS
/1/1423
/1/1424 END

Sample Program C, continued

'Invalid Filename - Try Again'
,lDH
' 12345)'

7%24
3

32
32
32
32
32
ii

256
256
256

BEGIN

;This will be used in building the LOC
;Display will appear as (d) to (ddddd).
;Backspace without erasing
;Etx, used to get the @DSPLY SVC to stop

;User Text Originally placed here
;Target Filename goes here
;32 bytes for the File Control Block
;32 bytes for the File Control Block
;An extra copy of the target FCB goes here
;The Logical Record Length of the source
;file will be stored here
;System buffer for File 1
;System buffer for File 2
;Data buffer for both files

;"begin" is the starting address

Software 17 4

Ln #

fl)l/l/11
il/1/1/12
il/1/1/13
/I/J/1/14
il/1/1/15
/l/l/,l/l6
/1/1/1/)7
/1/1/1/19
/1/1/11/1
/1/1/111
/1/1/112
/1/1/113
/1/1/114
/1/1/115
/1/1/116
/1/1/117
/1/1/118
/1/1/119
/1/1/12/1
/1/1/121
/1/1/122
/1/1/123
/1/1/124
/1/1/125
/1/1/126
/1/1/127
/1/1/128
/1/1/12 9
11/1/13/1
/1/1/131
/1/1/132
/1/1/13 3
/1/1/13 4
/1/1/135
/1/1/136
/1/1/137
/1/1/138
/1/1/139
/1/1/14/1
/1/1/141
/1/1/142
/1/1/143
/1/1/14 4
/1/1/145
/1/1/146
/1/1/147
.0/1/148
/1/1/149
/1/1/15/J
/1/1/151
/1/1/152
/1/1/15 3
/1/1/15 4
/1/1/155
/1/1/156
/1/1/157
/1/1/158
/1/1/159
/1/1/16/1
/1/1/161
/1/1/162
/1/1/16 3
/1/1/16 4
/l/l/165
/1/1/166
/1/1/167

Sample Program D

Source Line

This program will read a sector from the disk in Drive S
and will write it to a disk in Drive 1. The disk in Drive
must be formatted, but should not have anything important on
it. This program makes an assumption that the directory is
located on cylinder 2/1 (x'14'1.

PSECT 3/J/1/IH ;This program begins at x'3/I/I/I'.

Define the equates for the SVCs that will be used.

@I\BORT: EQU
@CKDRV: EQU
@DCSTI\T:EQU
@ERROR: EQU
@EXI'r: EQlJ
@RDS EC: EQU
@RDSSC: EQU
@WRSEC: EQU
@WRSSC: EQU

21
33
4/1
26
22
49
85
53
54

Other Equates

SYSSEC: EQU
USRSEC: EQU

14/1/IH
/1/1/1/IH

;l\bort and return to TRSDOS
;Test to see if a drive is ready
;Verify that a drive is defined in the OCT
;Display an error message
;Return to TRSDOS or the calling program
;Read a sector
;Read a system sector
;Write a sector
;Write a system sector

;The system sector is Cylinder 2/1, Sector ii
;The regular sector is Cylinder fJ, Sector f5

First, test the target drive and make sure it is defined.

STI\RT: LD
LD
RST
JR

c,1
l\,@DCSTI\T
28H
NZ,ERROR

;Select Drive 1
;l\sk if the drive is listed in the OCT
;Call the @DCSTI\T SVC
;If NZ, then the drive is not defined
;and we will abort execution.

Now, test and make sure the target drive contains a formatted
disk and is write-enabled.

LO C,1
LD l\,@CKDRV

RST 28H
LD 1\,8

JR NZ,ERROR
LO 1\,15

JR C,ERROR

;Select Drive 1
;Test to see if the disk is formatted
;and is write-enabled. Note that the
;disk must be formatted by TRSDOS 6.x
;or by LOOS 5.1..x to be considered
;"formatted" by this svc.
;Call the @CKDRV SVC
;This will become the error number if the
;drive was not ready. This is done
;because the @CKDRV svc does not return error
;codes .
;The drive is not ready
;This will become the error number if the
;drive is ready and is write-protected.
;As above, this is done because @CKDRV does
;not return error messages.
;The disk is formatted, but it is
;write-protected. In either case, abort.

Now that we know the target drive is ready, read a sector
from the source drive and write it to the target drive (Drivel}.

LD C,/1 ;Select Drive ii
LD DE,USRSEC ;Read the first sector on the disk,

;Cylinder /I, Sector /I.
LO HL,BUFF ;Point to a buffer which will hold the sector
LO l\,@RDSEC ;Read a non-system sector
RST 28H ;Call the @RDS EC SVC
JR NZ,ERROR ;If NZ, an error occurred, so abort

Software 175

/,l/,l/368
/3/3/36 9
/,l/3/37/,l
/,l/,l/371
/,l/,l/372
/,l/,l/373
/,l/,l/374
/,l/3/375
/,l/,l/376
/,l/3/377
/,l/,l/378
/,l/,l/379
/,l/,l/38/,l
/,l/,l/381
/,l/,l/382
/,l/,l/383
/,l/,l/384
/3/3/385
/3/3/386
/,l/3/387
/,l/,l/388
/,l/,l/389
i~~')~
/,l/3/391
/,l/,l/392
/3/3/393
/3/3/394
/3/3/395
/,l/,l/396
/,l/,l/397
/3/3/398
/,l/,l/399
/,l/31/,l/,l
/3/31/31
/,l/31/32
/,l/31/33
/,l/31/34
/,l/31/35
/,l/31/36
/,l/31/37
/,l/31/38
/3/31/39
/,l/311/,l
/3/3111
/,l/3112
/,l/3113
/,l/3114
/3/3115
/,l/3116
/,l/3117
/,l/,lll8
/,l/3119
/,l/312/,l
/,l/3121
/,l/,ll22
/,l/,ll23
/,l/3124
/,l/3125
/,l/,ll26
/,l/,ll27

ERROR:

BUFF:

Sample Program D, continued

Now, write the sector to the target drive.

LD C,l ;Select Drive 1
LD DE,USRSEC ;Write the sector to Cylinder /,l, Sector /,l

;on Drive 1
LD HL,BUFF ;Point to the buffer containing the sector
LD A,@WRSEC ;Write the sector to disk
RST 28H ;Call the @WRSEC SVC
JR NZ,ERROR ;If NZ, an error occurred, so abort

Now we will read a system sector from Drive~ and write it on
drive 1. The difference between a system sector and a non-system
sector is that the Data Address Marks (DAM) are different. These
were written to the disk when it was formatted. TRSDOS 6.x uses
these as an extra check to make sure that a write of user data
does not accidentally get placed over a sector containing system
data. All of the sectors in the directory cylinder are marked
as system sectors.

LD
LD
LD

RST
JR

c,/,l
DE,SYSSEC
HL,BUFF
'II Ar,n (">,:,,-, .. ,,..,
28H
NZ,ERROR

;Select Drive /,l
;Read Cylinder 2/,l, Sector /,l
;Store the sector at this address
.r,,...,-::1 " ~.,,...-1....,,..... ,...~,..,l..~-

;Call the,@RDSSC svc
;An error occurred, so abort

Now write the sector to the target drive as a system sector.
There is no requirement that a sector must be placed at the
same cylinder and sector location as it was read from, but
for simplicity, we are doing that.

LD C,1
LD DE,SYSSEC
LD HL,BUFF
LD A,@WRSSC
RST 28H
JR NZ,ERROR

LD A,@EXIT
RST 28H

;Select Drivel
;Write Cylinder 2/,l, Sector /,l
;Point to the data to be written
;Write a system sector
;Call the @WRSSC svc
;An error occurred, so abort

;Return to TRSDOS or the calling program
;Call the @EXIT svc

This routine displays an error message if anything goes wrong.
Note that @CKDRV does not return an error message, so @ERROR
cannot be used for it without some manipulation.

OR
LD
LD

RST

LD

RST

DEFS

/,lC,lH
C,A
A,@ERROR

28H

A,@ABORT

28H

256

END START

;Set bit 7
;Load error number into register C
;This will display the error message
;and return to the calling program
;Call the @ERROR SVC

;Now, force an abort4 This will return
;to TRSDOS Ready and will abort any
;JCL file that is currently executing
;Call the @ABORT SVC

;256-byte buffer to store the sector that
;is read and then written

Software 176

Ln #

/l/l/l/ll
/l/l/l/l2
/l/l/l/l3
/l/l/l/l4
/l/l/l/l6
/l/l/l/l7
f1/l/l!J8
/l/l/l/l9
/l/l/ll/l
/l/l/lll
/l/l/ll2
/l/l/ll3
/l/l/ll4
/l/l/llS
f1/l/ll6
/l/l/ll 7
f1f1/ll8
f1/l/ll9
/l/l/l2/l
/l/l/l21
/l/l/l22
/l/l/l23
f1/l/l24
/l/l/l25
/l/lil26
/lilil27
/lilil28
/l/l/l29
/l/lil3/l
/l/l/l31
/l/l/l32
/l/l/l33
/l/l/l34
/l/l/l35
/lil/l36
/l/l/l37
/l/l/l38
/l/l/l39
/l/l/l4/l
/l/l/l41
/l/l/l 42
/l/l/l43
/lil/l44
/l/l/l45
/l/l/l46
/lil/l47
/l/l/l48
/l/l/l49
/l/l/lS/l
/l/l/l51
/l/l/l52
/l/l/l53
/l/l/l54
/lil/l55
/l/l/l56
/l/l/l57
/l/l/l58
/l/l/l59
/l/l/l6/l
/l/l/l61
/l/l/l62
/l/lil63
/l/l/l64
/l/l/l65
/l/l!J66
/l/l/l67

Sample Program E

Source Line

This program displays the filenames of the disk in
Drive /l three different ways.

PSECT 3/l/l/lH ;Program begins at x'3/l/lil'

First, declare the equates for the SVCs we intend to use.
This is not mandatory, but it makes the program easier to follow.

@CMNDI: EQU

@CMNDR: EQlJ

@DODIR: EQU

24

25

34

;Execute a TRSDOS command
;to TRSDOS Ready
;Execute a TRSDOS command
;to the calling program
;Display visible filenames

and return

and return

on the
;specified disk drive

First, pass a "DIR :/l" command to the system. TRSDOS will
execute this command and then return to this program.

START: LD HL,DIR/l
A,@CMNDR
28H

;Point at command we want to execute
;Execute the specified command and return
;Call the @CMNDR SVC

DIR/l:

LD
RST

You may have noticed that the DIR displayed the files, but that
they were not sorted alphabetically. This is because the DIR
command will not use memory above x 1 3~Jf~ 1 when it is invoked with
a @CMNDR svc. This prevents the DIR command from performing a
sort of the filenames.

Now do a directory command using the @DODIR SVC.

LD 8,/l ;Use Function /l which displays all
;visible files in the directory.

LD C,/1 ;Put source drive number in register C
LD A,@DODIR ;The filenames will be read from the

;directory and displayed in the
;order they appear in the directory.

RST 28H ;Call the @DODIR SVC

Now pass a "DIR :Jf 11 command to the system. This time
the command will be executed and then TRSDOS will not return
to this program, but will return to TRSDOS Ready.

LD
LD

RST

HL,DIR/l
A,@CMNDI

28H

;Point at the command we want performed
;and execute it, but don't return to
;this program.
;Call the @CMNDI SVC
;This svc returns to TRSDOS Ready.

Note that when the library command DIR is performed this time,
the display of files is sorted. This is because DIR determines
that it was invoked with a @CMNDI svc, and it will not return
to the calling program. Therefore, DIR is free to use the
memory above x'3/lil/l' to perform the sort of the filenames in
the directory.

Constants

DEFM

DEFB

'DIR :/l'

/lDH

END START

;This command is passed to TRSDOS
;via the @CMNDR and @CMNDI SVCs.
;It must be terminated with an <ENTER>.

Software 177

r.n #

/l/lfllll
/l/l/l/l2
/l/l/l/!3
/l/l/l/!4
/l/l/l/!5
/l/l/l/!6
/l/l/l/l7
/l/l/l/l8
/l/l/l/l9
/l/l/ll/l
/l/l/lll
/l/l/ll2
/l/l/ll3
/l/l/ll5
/l/l/!16
,l/l/ll7
/l/l/ll8
/l/l/ll9
,l/l/!2/l
/l/l/!21
/l/l/!22
):)jljll.l
/l/l/!24
fl/l/l25
/l/l/l26
/l/l/l27
/l/l/l28
/l/l/!29
/l/l/!3/l
/l/l/l31
/l/l/l32
/l/l/!33
/l/l/!34
fl/l/!35
,l/l/!36
,l/l/l37
,l/l/!38
/l/l/l39
/l/l/l4/l
/l/l/l41
/l/l/l42
,lf,l/l43
/l/l/l44
/l/l/l45
/l/l/!46
/l/l/l47
/l/l/!48
/l/l/!49
/l/l/!5/l
/l/l/!51
/l/l/!52
/l/l/!53
/l/l,154
/l/l/l55
/l/l/!56
ff/l/l57
/l/l/l58
/lff/l59
/l/lf,/6,1
/lff/l61
ff/l/362
/l/l/l63
/l/l/l64
/l/l/365
/l/l/366
ff/l/!67

Sample Program F

Source Line

This program adds to the system task scheduler a task
which displays the date and a running count of the number
of times the task has been executed.
For simplicity, the program tries to use task slot /l.
If it is already in use, it assumes that the task using that
slot is this program, and it kills the task. It then tries to
recover the memory used by the task in high memory.
If the task slot is not in use, the task is placed in high memory,
and the address of the task is passed to the task scheduler.
The first time you run this program it adds the task, and the
next time you run this program, it removes the task.

PSECT 3/l/l/lH ;This program starts at x'3/l/l/l'

First, declare the equates for the SVCs we intend to use.
This is not mandatory, but it makes the program easier to follow.

@ADTSK: EQU
@CKTSK: EQU
@DATE: EQU
@DSPLY: EQU
~i,:x.t·1·: i,:uu
@GTMOD: EQU
@HEXDEC:EQU
@HIGH$: EQU
@RMTSK: EQU
@VDCTL: EQU
@WHERE: EQU

29
28
18
1/l
u
83
97
1/l/l
3,l
15
7

;Add a task entry to the scheduler
;Check to see if a task slot is in use
;Return the date in ASCII format
;Display a message
; Hee.urn t:.o TH::,uu::, Keaciy or ciie cdll~.t
;Locate a memory module
;Convert a binary value to decimal ASCII
;Read or modify HIGH$ or LOW$
;Remove a task entry from the scheduler
;Perform video operations
;Find out where the program counter is
;when this SVC is executed. This is
;useful in relocatable code that must
;make absolute address references to
;call subroutines or modify data.

CALLR:

Below we will define a macro to simulate a call relative
instruction. Since the task must be able to run no matter
where it is placed, it must use relative jumps and calls.
The Z8/l instruction set has a jump relative (JR), but does
not have a call relative instruction. This can be simulated
using the @WHERE SVC, which returns the address of the caller
in a register. This address can be adjusted and placed on
the stack as a return address. Then a jump relative can be used
to reach the subroutine.

MACRO #1
PUSH HL
PUSH BC
PUSH AF
LD A,@WHERE
RST 28H
LD BC, 3+1+1+1+1+2

ADD HL,BC
POP AF
POP BC
EX (SP) ,HL
JR #1
ENDM

;#1 will be the address you want to call
;Save the registers we damage
;Save it
;Save it
;Get our current address
;Call the @WHERE SVC

;Get the lengths of the instructions after
;the SVC. This will allow the subroutine
;to return to the correct address.
;Add that offset to where we are
;Put stack back
;Restore registers
;Put return address on stack and restore HL
;Jump to the subroutine
;End of the macro

This is the main program. It loads at x'3/l/l/l'. It decides
if it needs to add or remove the task in the scheduler tables.
If it adds the task, it moves a copy to the top of memory and
protects it, and adds a task entry to the scheduler.
If it is removing a task, it kills the entry in the scheduler

Software 178

JHIJJ68
JJJJJJ69
JJJJJJ7/J
JJJJJJ71
JJJJJJ72
JJJJJJ73
JJJJJJ74
il/JJJ75
JJJJ/J76
JJJJJJ77
JJJJJJ78
JJJJJJ79
JJJJJJ8/J
JJJJJJ81
JJJJJJ82
JJJJJJ83
JJJJ/J84
JJJJJJ85
JJ/J/J86
JJ/JJJ87
JJJJ/J88
JJJJJJ89
JJ/JJJ9/J
JJ/J/J91
JJJJJJ92
/JJJ/J93
JJJJJJ94
JJ,JJJ95
JJ/J/J96
,1,1JJ97
,1,1/,J98
JJ,1,199
/J,11/JJJ
,1,11,11
/JJ11/J2
/J,ll/J3
J,J,11/J4
JJ,11/JS
/JfJl/J6
/JfJl/J7
J,J,11/JS
/JfJl/J9
/JfJll!i
J,Jf,1111
JJjill2
ii!i113
/JJJ114
il/Jll5
JJJ,Jll6
/JJJll 7
JJ!ill8
jijill9
ji/Jl2/J
!i/Jl21
/Jiil22
JJ,1123
/J/Jl24
/JfJ125
/J/ll26
/Jiil27
JJ/Jl28
ii/Jl29
ii/Jl3ii
/Jl/131
jiJJ132
/Jl/133
/Jl/134
.0/Jl35

BEGIN:

Sample Program F, continued

tables, and then attempts to recover the memory used by the task.

LD
LD
RST
JR

c,JJ
A,@CKTSK
28H
NZ, KILLIT

;First, we will test slot /J
;to see if anyone is using it
;Call the @CKTSK SVC
;There is a task using slot ll, kill it

At this point, we want to add a task to high memory.
First we find the value for HIGH$ and put a copy of the
task there. Then we protect the task by moving HIGH$ below
the new task.

LD
LD
LD
RST
LD

HL,/J
B,H
A,@HIGH$
28H
(ENDADD) ,HL

;First, get the value of HIGH$
;Read HIGH$

;Call the @HIGH$ SVC
;Save this value as the last address
;that the task will be stored in once it
;is moved to high memory

LD DE,HL ;Put that value here
LD HL,MODEND-1 ;Point at the end of the module
LD BC,MODEND-MODULE;Move the module from where it is

;right now to a position below HIGH$
LDDR ;Do the copy

LD
LD
LD
RST

HL,DE
B,/J
A,@HIGH$
28H

;Now protect the module using HIGH$
;Update HIGH$

;Call the @HIGH$ svc

Now we need to load the TCB entry in the module with the address
of the first instruction to be executed.

LD IX,HL ;IX now points at memory header
LD BC, ENTRY-MODULE+l ;Get the offset into the module

;of the first instruction
ADD HL,BC ;HL now contains the actual starting address
LD (IX+<l+MOD'rCB-MODULE)) ,L ;Store LSB of the address
LD (IX+l+(l+MODTCB-MODULE)),H ;Store MSB of the address

Now the task is ready to run. We now add the entry to the task
scheduler table.

LD BC ,MODTCB-MODULE+l ;Get offset into the
;module of the TCB word

PUSH IX ;Get a copy of the base address
POP HL ;Put base address here
ADD HL,BC ;Now HL points at TCB address
LD DE,HL ;Put that value in DE
LD C,/J ;Add this entry to task slot ll
LD A,@ADTSK ;Add this task, to be run every 266.67 msec
RST 28H ;Call the @ADTSK SVC

The main program has now done its work and can exit.

LD
LD
RST

LD
RST

HL ,ADDED
A,@DSPLY
28H

A, @EXI'r
28H

;Point at a message saying what was done
;and print it
;Call the @DSPLY SVC

;Now exit
;Call the @EXIT SVC

This SVC does not return.

This part of the code removes the task from the scheduler
tables and then attempts to recover the memory that was used

Software 179

f!f!l 36
!J/H37
.0.0138
.0.0139
.0.014.0
.0.0141
/l.0142
.0.0143
.0.0144
/l.0145
.0.0146
.0.0147
.0.0148
/l.0149
.0.015.0
/l.0151
.0.0152
.0JH53
/l.015 4
.0.0155
.0.0156
.0.0157
.0.0158
)l!JD~

.0.016.0

.0.0161

.0.0162

.0.0163

.0.0164

.0.0165

.0.0166

.0.0167

.0.0168

.01"169

.0.017.0

.0.0171

.0.0172

.0.0173

.0.0174

.0.0175

.0.0176

.0.0177

.0.0178
.0.0179
.0.018.0
.0.0181
.0.0182
.0.0183
.0.0184
.0.0185
.0.0186
.0.018,
.0.0188
.0,0189
.0.019.0
.0,0191
.0.0192
.0,0193
.0.0194
.0.0195
.0.0196
.0.0197
.0.0198
.0.0199
.0.02.0.0
.0.02.01
.0.02.02
.0.02.03

KILLIT:

CANT:

ADDED:

OK:

RECLM:

Sample Program F, continued

by thP t~sk in high mAmory. If another high memory module
was added AFTER this task was added, then the memory that
was used by this task cannot be recovered .

LO c,.0 ;We want to remove the task in slot
LO A,@RMTSK
RST 28H ;Call the @RMTSK SVC

.0

At this point, the task is no longer called by the operating
system. Now we want to determine if we can
reclaim the memory it was using.

LO DE,MOONAM ;Point at the name of the module
LD A,@GTMOD ;Look for a module with that name
RST 28H ;Call the @GTMOD SVC
JR NZ,CANT ; If NZ is set, then we killed some other

;task that was using slot .0 • Oops.
;In that case, just stop and don't do any
;more damage.

LD IX,HL ;Set IX to point to the module.
LD B,.0 ;Read the current value of HIGH$
LD HL,.0 ;to see if this is the first program in

;high memory
LU A, ~ttl.t.,tt:;, ;.1£ le. lti, c.il~H Wt, {.;ctU L t:L:UVt:L i..itt: blJaL:t::

RST 28H ;Call the @HIGH$ SVC
INC HL ;Move HIGH$ up by one byte
PUSH IX ;Take the address of our module
POP DE ;and store it here
XOR A ;Compare these
SBC HL,DE ;Are they the same?
JR NZ,CANT ;No, the high memory module can't be removed

At this point, we know it is ok to reclaim the memory used by the
high memory task •

LO HL, (IX+2) ;Read the end of module value out of the
;header information

LD B,,0 ;Update the HIGH$ value
LD A,@HIGH$
RST 28H ;Call the @HIGH$ SVC

LD HL,OK ;Point to a message saying all is well
LD A,@DSPLY ;and print it
RST 28H ;Call the @DSPLY SVC

LD A,@EXIT ;Exit the main program
RST 28H ;Call the @EXIT SVC

Here we will display a message saying we removed the task from
the scheduler table, but we cannot reclaim the memory that was
used •

LD HL,RECLM ;Point to the message
LD A,@DSPLY ;and display it
RST 28H ;Call the @DSPLY svc

LD A,@EXIT ;Now exit
RST 28H ;Call the @EXIT SVC

Messages

DEFM 'Task placed in high memory and scheduled. '
OEFB /lDH
DEFM 1 Task removed from scheduler table and memory reclaimed.
DEFB jlDH
DEFM 'Task removed from scheduler table, but memory could not

Software 180

'

/,1/,12/,14
fJJ,12/,15
/,1/,12/,16
fJJ,12/,17
fJ/,12/,18
/l/l2fJ9
fj/,121/l
fj/,1211
fj/,1212
/l/,1213
/l/,1214
/,1/,1215
/,1/,1216
/l/,1217
/l/,1218
/,1/,1219
/,1/,122/l
/,1/,1221
/,1/,1222
fJ/,1223
/l/,1224
/J/,1225
/,1/,1226
/J/,1227
/JJ,1228
/J/,1229
/J/,123/,1
/il/,1231
/J/,1232
/J/,1233
/J/,1234
/J/,1235
/J/,1236
/J/,1237
/J/,1238
/J/,1239
/J/,124/l
/J/,1241
/,1/,1242
/J/,1243
/J/,1244
/,1/,1245
/l/,1246
/J/,124 7
/,1/,1248
/l/,1249
/,1/,125/J
/,1/,1251
/,1/,1252
/l/,1253
/,1/,1254
/,1/,1255
/l/,1256
/,1/,1257
/l/,1258
/J/,1259
/,1/,126/l
/,1/,1261
/l/,1262
+
+
+
+
+
+
+
+

Sample Program F, continued

DEFM 'be recovered.
DEFB /JDH

The Task begins at this point. This part of the program loads
in low memory but is relocated to a point just below HIGH$.

This is the Memory Header Block. This block of data allows
the system to locate this module in memory by name,
using the @GTMOD SVC.

MODULE: JR
ENDADD: DEFW

DEFB
MODNAM: DEFM

MODTCB: DEFW

DEFW

ENTRY
/,I

MOD"rCB-MODNAM
'UPTIME'

fJ

fJ

;Jump (relative) to the starting address
;The highest address in the program.
;This value is patched in before the program
;is relocated. This will be used
;later in recovering the memory used by
;this task.
;Number of bytes in the name field below.
;This is the name of the module and is
:used to identify the module.
;Actual address to start execution. This
;value is patched in after the program is
;relocated.
;Spare system pointer - RESERVED

This area contains data used by the task. It is addressed using
the IX register which points to the task when it is executed.

COUNTER:DEFW
DATBUF: DEFS

/,I
9

This is the actual task.

;Count of how many times we have run
;The date is stored here

On entry to the task, IX points at the Task Control Block (TCB),
which in this program is the label 'MODTCB'. All data is
referenced by indexing from that address.

ENTRY: PUSH IY ;Save this register. It is not saved by
;the Task Scheduler, and we use it.
;Registers AF, BC, DE, and HL are saved

Now we will read the current date.

LD HL, IX ;Get a copy of the index pointer
LD BC,DATBUF-MODTCB;Get the offset needed to access the date
ADD HL,BC ;Now we have a pointer to the date

PUSH
PUSH
LD
RST

LD

POP
POSH
LD

CALLR
PUSH
POSH
PUSH
LD
RST
LD

IX
HL
A,@DATE
28H

(HL) ,/,I

DE
DE
HL, /l/l28H

WRITE
HL
BC
AF
A,@WHERE
28H
BC,3+1+1+1+1+2

;Save the pointer to the start of the task
;Save a copy of that pointer
;Ask the system what the date is
;Call the @DATE SVC

;Terminate the date string

;Put pointer to the date here
;We will use this pointer later on
;Put the cursor on the top line,
;specified in register HL
;at the 41st position on the screen
;Write the message at the position
;Save the registers we damage
;Save it
;Save it
;Get our current address
;Call the @WHERE svc
;Get the lengths of the instructions after
;the SVC. This will allow the subroutine
;to return to the correct address~

Software 181

+
+
+
+
+
/lll263
/lll264
/1/1265
/Ji/266
/lll267
Jljl268
/lll269
/lll27/1
/1/1271
/1/1272
/1/1273
/1/1274
/lll275
/lll276
/1/1277
/lll278
/1/1279
00280
/1/1281
/1/1282
JoJl283
/lll284
/1/1285
Jljl286
/1/1287
/1/1288
/11l289
Jljl291l
,0IJ291
/lll292
/1IJ293
/11l294
+

+
+
+
+
+
+
+
+
+
/11l295
/1f/296
Jlf/297
Jljl298
jlll299
Jlll31lll
Jljl3f/l
Joll31l2
/lll31l.3
/11l3f/4
Jljl3f/5
/11l31l6
Joll31l7
/1IJ31l8
/11l31l9
Joll3lll
/lf/311
Joll312

WRITE:

TSKLP:

ADD
POP
POP
EX
JR

Sample Program F, continued

iiL,BC
AF
BC
(SP) ,HL
WRITE

;Add that offset to where ·we are
; Put stack back
;Restore registers
;Put return address on stack and restore HL
;Jump to the subroutine
;Note that the above was actually a macro
;which performs a relative call.

This part of the task displays a count of the number of times
the task has been executed.

POP DE ;Get the pointer to DATBUF back
POP IX ;Get the pointer to the beginning of

;this task
PUSH DE ;Save the pointer to DATBUF again
LO BC,COUNTER-MODTCB ;Get the offset to our data

LD
ADD
LO
LO
LO
INC
LO
LO

LD
RST

XOR
LO

POP
LO

CALLR
PUSH
PUSH
PUSH
LO
RST
LO

ADD
POP
POP
EX
JR

HL,IX
HL,BC
IY,HL
L, (IY)
H,(IY+l)
HL
(IY) ,L
(IY+l) ,H

A,@HEXDEC
28H

A
COE) ,A

DE
HL,IJIJ36H

WRITE
HL
BC
AF
A,@WHERE
28H
BC,3+1+1+1+1+2

HL,BC
AF
BC
CSP) ,HL
WRITE

;area
;Put a copy of the base address in HL
;Add offset. Now HL points to COUNTER:
;Put the pointer to COUNTER in IY
;Get LSB of the counter
;Get MSB of the counter
;Increment the number of times we have run
;Store the LSB of the counter
; Store the MSB of the counter

;Convert the count to decimal
;Call the @HEXDEC SVC

;Get a zero
;Terminate the count string

;Put pointer to date here
;Put the cursor on the top line,
;specified in register HL
;at the 55th position on the screen
;Write the message at the position
;Save the registers we damage
;Save it
;Save it
;Get our current address
;Call the @WHERE SVC
;Get the lengths of the instructions after
;the SVC. This will allow the subroutine
;to return to the correct address.
;Add that offset to where we are
; Put stack back
;Restore registers
;Put return address on stack and restore HL
;Jump to the subroutine
;Note that the above was actually a macro
;which performs a relative call.

Now we restore the IY register and return to the task scheduler.

POP
RET

IY ;Restore IY value
;Return to the task scheduler

This routine places characters on the display using the @VDCTL
svc instead of @DSP or @DSPLY. This allows the cursor to
remain at its current position when we write to the screen.
This routine must be called using the relocatable call macro
CALLR.

LD

LO

B,2

A, (DE)

;Put character on the display

;Get a character to display

Software 182

.0/1313

.0/1314

.0/1315

.0/1316

.0/1317

.0/1318
jljl319
.0/132/1
.0/1321
.0/1322
.0/1323
/1/1324
.0/1325
jljl326
.0/1327
/1/1328
jl/1329

OR

RET
PUSH
PUSH
PUSH
LD
LD
RST
POP
POP
POP
INC
INC
JR

MODEND: END

Sample Program F, continued

A

z
HL
DE
BC
C,A
A,@VDCTL
28H
BC
DE
HL
L
DE
TSKLP

BEGIN

:Is it time to stop putting this on
;the display?
;Yes, return to the caller
;Save the registers, as the SVC will
;alter the contents

;Put the character here
;Put character on screen at specified position
;Call the @VDCTL svc
;Restore registers

;Advance display position
;Point to next character to display
;Loop till date is completely displayed

;End of task and main program

Software 183

lllllllll
/l,l/illl2
/ilfi/fi/1/3
/l/il/ilfi/4
/l/l/ilfi/5
/il/l/il/l6
/l/l/l/l7
/l/l/l/l8
/1/l/1/l9
/l/l/ll/l
/l/l/lll
/l/lfi/12
/l/l/ll3
/l/il/ll4
/l/l/llS
/l/l/ll6
/l/lfi/17
/l/lfi/18
/l/lfi/19
/l/l/l2/l
/l/lfi/21
/l/lfi/22
/l/ilfi/23
,0,0,024

/l/lfi/25
/l/l/l26
/l/lfi/27
/l/lfi/28
/ilf/fi/29
/il/lfi/3/il
/il/ilfi/31
/il/lfi/32
/l/ilfi/33
/l/lfi/34
/l/ilfi/35
/il/il/l36
/il/lfi/37
/il/lfi/38
/il/ilfi/39
/il/il/l4/l
/l/ilfi/41
/l/lfi/42
/il/ilfi/43
/l/ilfi/44
/l/ilfi/45
/il/il/l46
/il/il/l47
/l/ilfi/48
/l/ilfi/49
/l/il/lS/il
f/f/i;/51
/lf/f/52
/l/ilf/53
/lf/f/54
/lf//l55
/l/ilf/56
/il/lfi/57
/il/ilfi/58
/l/ilf/59
/li;/fi/6/l
/l/ilf/61
/ll'lf/62
l'l/l/l63
/l/il/l64
/li;/f/65
/lf/f/66
/lf/i;/67
/l/l/l68

@EXIT:
@DSPLY:
@FLAGS
@DOD IR
@KEY IN
@CMNDI

Sample Program G

Thi::; program is a sample Extended Command Inte:preter. You
may make the ECI as large or small as you require. You may
use allof main memory, or you can restrict yourself to the
system overlay area (x'261'/f/' to x'2FFF').
To pass a command to the normal system interpreter for
processing, use the @CMNDI svc. TRSDOS executes the command
and reloads the ECI. If you want to have multiple entry
points, Bits 2 - /ii in EFLAG$ are in Register A on entry
(in Bits 6 - 4),or you may read EFLAG$ yourself.
EFLAG$ is totally dedicated to the ECI, and may contain any
non-zero value. If EFLAG$ contains a zero, TRSDOS uses its
own interpreter. Other programs that want to activate an ECI,
should set the EFLAG$ to a non-zero value and execute a @EXIT
SVC.

To install an ECI, use the command:
COPY filename SYS13/SYS.LSIDOS:d (C=N)

If you omit the C=N option, the SYS13 file loses it's "SYS"
status and you will receive 'Error i7' messages when you try
to use it as a ECI.

When SYSl (the normal command interpreter) has completed it's
normal housekeeping and is about to display the "TRSDOS Ready"
prompt, 1.t checks .t;.t•"LAli!?. 1r Kl:"LA~:;, conc.ains a non-zero
value, TRSDOS loads and executes the Extended Command
Interpreter.
To execute this program, type <*><Enter>.

This program checks EFLAG$ to see if it is zero. If so, it
sets it to a non-zero value. This causes this program to be
used instead of the normal interpreter when you execute an
@EXIT or @ABORT SVC. (@CMNDI and @CMNDR invoke the TRSDOS
interpreter.) If EFLAG$ is non-zero, the ECI displays a few
prompts and the names of all visible /CMD files on logical
Drive /ii.
The operator may then type the name of a program to execute.

If you press <Break>, this program sets EFLAG$ to /l, executes
an @EXIT SVC and returns to TRSDOS Ready.

By pressing a number, /l through 7, you can specify the drive
that TRSDOS searches. This program stores this value in
EFLAG$. Each time this program is invoked, it reads the value
from EFLAG$ and uses that drive.

Note that if a drive is not enabled, not formatted, doesn't
exist, or contains no visible /CMO files, this program
redisplays the prompt.

PRINT

PSECT

Declare
This is
follow.
EQU
EQU
EQU
EQU
EQU
EQU

SHORT,NOMAC

3/lf/f/H ;This program starts at x'3/l/l/l'

the equates for the SVCs used.
not mandatory, but it makes the program easier to

22
1/l
1/ll
34
9
24

;Exit and return to TRSDOS
;Display a string
;Locate the system flag area
;Get the names of filenames
;Accept a command and allow editing
;Execute a command (using SYSl)

On entry, determine if EFLAG$ is set to zero or not. If it
is set to zero, this program is being started by typing
PROGRAM<Enter> or <*><Enter>. In that case, set EFLAG$ to a
non-zero value so that in future, TRSDOS uses this interpreter
instead of it's own.

Software 184

!l/lll69
1Hlll7/:l
/HJ/;l71
!Hl/l72
area
/l/l/l73
/l/l/l74
ll/l/l75
/Hl/l76
/Hl/l77
/l/l/l78
/l/l/l79
/l/l/l8/l
/l/l/l81
/l/l/l82
/l/l/l83
/l/l/l84
!l/l/l85
/l/l/l86
/l/l/l87
/l/l/l88
/l/l/l89
/l/l/l9/l
/l/l/l91
/l/l/l92
/l/l/l93
/l/l/l94
/l/l/l95
/l/lll96
/)¢1197
/l/l/l98
/)¢099
/lfi/1/l/l
/lill/ll
/l/ll/l2
llill/l3
/lill/l4
/l/ll/l5
/l/ll/l6
/lill/l7
ll/ll/lB
/lillll9
il/lll/l
llfi/111
/lfi/112
/lfi/113
/lfi/114
/l/lllS
/lfi/116
/lfi/117
/l/lllB
1Hl119
/l/ll2/l
/l/)121
/l/)122
/l/)123
/l/)124
/l/ll25
/lfi/126
llfi/127
/lfi/128
/lfi/129
llfi/13/l
/l/)131
/lfi/13 2
/lfi/133
il/ll34
il/l135
/lfi/136

BEGIN:

Sample Program G, continued
If EFLAG$ is non-zero, this initialization has already been
done and can be skipped.

LD A,@FLAGS ;Get the startinq address of the flag

RST 28H ;Call the @FLAGS SVC

LD A,(IY+4) ;Read the EFLAG$ (ECI flag)
OR A ;Is it set to zero?
JR NZ,ECIRUN ;Run the ECI

LD A, 8 ;Get a non~zero value. The value
;needs to be a non-zero value that
;does not set Bits /l, 1 or 2. The
;default drive # is kept in these bits.

LD (IY+4) ,A ;Set the EFLAG$ to a non-zero value
LD HL,PROMPT ;Explain how this works
,JR ECIGO ;Display message

When the system is about to display
TRSDOS Ready, it executes this code instead.

ECIRUN: LD
ECIGO: LD

RST

HL,SPROMPT
A,@DSPLY
28H

;Point at the prompt to use
;Display the prompt
;Call the @DSPLY svc

ASK:

Display the names of all /CMD files

LD
AND
LD
LD
LD
LD
RST

A, (IY+4)
7
C,A
A,@DODIR
B,2
HL,CMDTXT
28H

;Get the EFLAG$
;Delete all but the drive number field
;Store the drive number for the svc
;Do a directory display
;Display visible, non-system files
;that match "CMD" (stored at CMDTXT)
;Call the @DODIR SVC

Prompt for a filename or a function key.

LD
LD
LD
LD
RST

JR

LD
LD

CP
JR

SUB
CP
,JR

HL,BUFFER
B,9
C,/l
A,@KEYIN
28H

C,QUIT

HL, BUFFER
A, (HL)

/lDH
Z,ASK

'/l'
7+1
NC,NAME

;Point at text buffer
;P.llow up to 8 characters and <Enter>
;Required by the svc
;Input text with edit capability
;Call the @KEYIN SVC

;The carry flag is set when the
;operator presses <BREAK>. Zero the
;EFLAG$ and exit to TRSDOS

;Point at the start of the buffer
;Get the character

;Did they type anything?
;No, just repeat the prompt.
;If you want to redisplay the
;directory, change 11 ASK 1

' to 1'ECIRUN'1
•

;Convert value to binary
;Is the character a¢ - 7?
;Must be a filename

The operator has typed 1 or more characters that start with
a number. This program assumes that the operator is defining
a new drive number and stores this value in EFLAG$ for
future use. TRSDOS does not alter this value.
The next time this program is run, EFLAGS contains the
same value and this program knows what drive to scan.

LD
LD

B,A
P., (IY+4 l

;Save the drive number
;Get the EFLP.G$

Software 185

.IH/137
jl/Jl38
fl,1139
fH/1411
1111141
1111142
1111143
111ll44
.IH/145
/H/14,;
1111147
.IH/148
1111149
11111511
1111151
1111152
1111153
111115 4
.IH/155
1111156
.IH/157
¢11158
1111159
11111611
.IH/161
1111162
1111163
1111164
EFLAG$.
1111165
1111166
1111167
1111168
1111169
111117(,/
f,/11171
.IH/172
(,/(,/173
11(,1174
f,/11175
.IH/176
11(,1177
.IH/178
11(,1179
(,/(,/179
(,/(,/18(,/
(,/(,/181
.IH/182
(,/(,/183
,0(,/184
.IH/185
1111186
Ml87
1111188
1111189
11111911
.011191

1111192
.0¢193

1111194
Ml95
.011196
1111197

.011198
11(,/199
fJf,/21111

QUIT:

NAME:
FDIV:

FOUND:

AND
OR
LD
JR

Sample Program G, continued
8
B
(IY+4) ,A
ECIRUN

;Delete the old drive number
;Tnsert. the new ririve number
;Save that value for future use
;Scan the new drive

The operator pressed <Break>.
TRSDOS.

Turn off the ECI and return to

XOR
LD
LD
LD
RST
LD
RST

A
(IY+4) ,A
HL,EPROMPT
A,@DSPLY
28H
A,@EXIT
28H

;Get a zero
;Set EFLAG$ to zero
;Point at the shutdown message
; And acknowledqe the <Break>
;Call the @DSPLY svc
;Return to TRSDOS Ready
;Call the @EXIT svc

The operator entered what might be a filename or a library
command. Pass it to TRSDOS for processing. If there is an
error, TRSDOS is responsible for determining what the error is
and printing a message.
(HL already points at the start of the buffer.)

LD
CP
JR
INC
JR

A,,0DH
(HL)
Z,FOUND
HL
FDIV

;Look for this character
; In the command
;Found the end of the filename
;Move character to next byte
;Find the divider (in this case, a 11DH)

Found the end of a filename, and add the drive number from

Note that this program may not work properly if the operator
supplies a drive number as part of the filename.

LD
INC
LD
AND
ADD
LD
INC
LD
LD
LD

RST

(HL), ,.,
HL
A, (IY+4)
7
A,'(,/'
(HL) ,A
HL
(HL),,0DH
HL,BUFFER
A,@CMNDI

28H

;Add a drive number to the filename
;Advance the pointer to the next byte
;Get the EFLAG$ value
;Delete all but the drive number
;Convert the binary value to ASCII
;Add that to the filename
;Advance the pointer to the next byte
;Write a terminator on the end
; Point at the text entered
;Execute the command, but do not
;return. Since this program is the
command processor at this time,TRSDOS
;returns control to the beginning of
;this module after executing the
;command~
;Call the @CMNDI svc

Messages and text storage

PROMPT: DEFM
DEFB
DEFB
DEFM
DEFB
DEFM

'[Extended Command Interpreter Is Now Operational l'
11AH
11AH
'Press <BREAK> to use the normal interpreter,
,0AH
•type <Number><ENTER> to change the default drive
number, 1

DEFB
DEFM

DEFB

SPROMPT: DEFB
DEFM

DEFM
DEFB

,01\H
'or type the name of the program to run and press
<ENTER>'
.0DH ;Terminate the display

11AH
'[ECI On] <BREAK> to abort, n<ENTER> for new drive or
type:'
' program<ENTER>'

11DH ;Terminate the message

Software 186

¢¢2¢1 EPROMPT:DEFM
¢¢2¢2 DEFB
¢¢2¢3
¢¢2¢4 CMDTXT: DEFM
¢¢2¢5 BUFFER: DEFS
¢¢2¢6
¢¢2¢7 END

Sample Program G, continued
'[Extended Command Interpreter Is Now Disabled]'
/lDH

'CMD'
11

BEGIN

;Allow for filename, drivespec and ¢DH

;
11 BEGIN" is the starting address

Software 187

9/Technical Information on TRSDOS
Commands and Utilities

TRSDOS commands and utilities are covered extensively in the Disk System
Owner's Manual. This section presents additional information of a technical
nature on several of the commands and utilities

Changing the Step Rate
The step rate is the rate at which the drive head moves from cylinder to cylindeL
You can change the step rate for any drive by using one of the commands
described below.

To set the step rate for a particular drive, use the following command:

SYSTEM (DRIVE=drive, STEP=number)

drive is any drive enabled in the system .. number can be 0, 1, 2, or 3 and rep
resents one of the following step rates in milliseconds:

0 = 6 milliseconds
1 = 12 milliseconds
2 = 20 milliseconds
3 = 30 milliseconds

Unless it is SYSGENed, the step value you select remains in effect for the spec
ified drive only until the system is re-booted or turned off .. If you use the
SYSGEN command while the step value is in effect, then this step rate is written
to the configuration file (CON FIG/SYS) on the disk in the drive specified by the
SYSGEN command

On a new TRSDOS disk, the step rate is set to 12 milliseconds.

To set the default bootstrap step rate used with the FORMAT utility, use the fol
lowing command:

SYSTEM (BSTEP = number)

number is 0, 1, 2, or 3, which correspond to 6, 12, 20, and 30 milliseconds,
respectively.

The value you select for number is stored in the system information sector on
the disk in Drive 0. (On a new TRSDOS disk, the bootstrap step rate is set to 12
milliseconds.)

If you switch Drive 0 disks or change the logical Drive 0 with the SYSTEM
(SYSTEM) command, the default value is taken off the new Drive 0 disk if you
format a disk.

You can change the bootstrap step rate for a particular FORMAT operation if
you do not want to use the default Specify the new value for STEP on the
FORMAT command line as follows:

FORMAT :drive (STEP=number)

drive is the drive to be used for the FORMAT number is 0, 1, 2, or 3, which cor
respond to 6, 12, 20, and 30 milliseconds, respectively.

The step rate is important only if you will be using the disk in Drive 0 to start up
the system. Keep in mind that too low a step rate may keep the disk from
booting

Software 189

Changing the WAIT Value
The WAIT parameter compensates for hardware incompatibility between cer
tain disk drives. The only time you should use it is when a/I tracks above a cer
tain point during a FORMAT operation are shown as locked out when the
FORMAT is verified

The value assigned to WAIT signifies the amount of time between the arrival of
the drive head at the location for a read or write, and the actual start of the read
or write.

If you want to change the WAIT value, specify the new value on the FORMAT
command line as follows:

FORMAT .:drive (WAIT= number)

number is a value between 5000 and 50000 .. The exact value depends on the
particular disk drive you are using. We recommend that you use a value around
25000 at first Adjust this value higher if tracks are still locked out, or lower until
the bottom limit is determined.

Logging in a Diskette
LOG is a utility program that logs in the directory track, number of sides, and
density of a diskette .. The syntax is:

LOG :drive

drive is any drive currently enabled in the system

The LOG utility provides a way to log in diskette information and update the
drive's Drive Code Table (DCT). It performs the same log-in function as the
DEVICE library command, except for a single drive rather than all drives. It also
provides a way to swap the Drive 0 diskette for a double-sided diskette.

The LOG :0 command prompts you to switch the Drive 0 diskette. You must use
this command when switching between double- and single-sided diskettes in
Drive 0. Otherwise, it is not needed.

Example

If you want to switch disks in Drive 0, type:

LOG : 0 IENTERI

The system prompts you with the message:

Exchanle disks and hit <ENTER>

Remove the current disk from Drive 0 and insert the new system disk. When
you press !ENTER!, information about the new disk is entered to the system.

Printing Graphics Characters
If your printer is capable of directly reproducing the TRS-80 graphics charac
ters, you can use the SYSTEM (GRAPHIC) command. Once you have issued
this command, any graphics characters on the screen will be sent to the line
printer during a screen print (Pressing ©N)GJ causes the contents of the
video display to be printed on the printer.)

Do not use this command unless your printer is capable of directly reproducing
the TRS-80 graphics characters.

Software 190

Changing the Clock Rate
The system normally runs at the fast clock rate of 4 megahertz.

A slow mode of 2 megahertz is available, and may be necessary for real time
dependent programs (This slow rate is the same as the Model Ill clock rate)

To switch to the slow rate, enter the following command:

SYSTEM (SLOW)

To switch back to the fast rate, enter:

SYSTEM (FAST)

Software 191

Appendix A/TRSDOS Error Messages

If the computer displays one of the messages listed in this appendix, an oper
ating system error occurred .. Any other error message may refer to an applica
tion program error, and you should check your application program manual for
an explanation.

When an error message is displayed:

• Try the operation several times.

• Look up operating system errors below and take any recommended
actions. (See your application program manual for explanations of appli
cation program errors.)

• Try using other diskettes

• Reset the computer and try the operation again.

• Check all the power connections

• Check all interconnections.

• Remove all diskettes from drives, turn off the computer, wait 15 seconds,
and turn it on again

• If you try all these remedies and still get an error message, contact a
Radio Shack Service Center

Note: If there is more than one thing wrong, the computer might wait until you
correct the first error before displaying the second error message.

This list of error messages is alphabetical, with the binary and hexadecimal
error numbers in parentheses. Following it is a quick reference list of the mes
sages arranged in numerical order.

Attempted to read locked/deleted data record (Error 7, X'07')

In a system that supports a "deleted record" data address mark, an attempt was
made to read a deleted sector. TRSDOS currently does not use the deleted
sector data address mark. Check for an error in your application program.

Attempted to read system data record (Error 6, X'06')

An attempt was made to read a directory cylinder sector without using the
directory read routines. Directory cylinder sectors are written with a data
address mark that differs from the data sector's data address mark. Check for
an error in your application program.

Data record not found during read (Error 5, X'05')

The sector number for the read operation is not on the cylinder being refer
enced. Either the disk is flawed, you requested an incorrect number, or the cyl
inder is improperly formatted. Try the operation again. If it fails, use another
disk. Reformatting the old disk should lock out the flaw.

Data record not found during write (Error 13, X'0D')

The sector number requested for the write operation cannot be found on the
cylinder being referenced. Either the disk is flawed, you requested an incorrect
number, or the cylinder is improperly formatted Try the operation again. If it
fails, use another disk.

Device in use (Error 39, X'27')

A request was made to REMOVE a device (delete it from the Device Control
Block tables) while it was in use. RESET the device in use before removing it.

Software 193

Device not available (Error 8, X'08')

A reference was made for a logical device that cannot be found in the Device
Control Block. Probably, your device specification was wrong or the device
peripheral was not ready .. Use the DEVICE command to display all devices
available to the system

Directory full - can't extend file (Error 30, X'1 E')

A file has all extent fields of its last directory record in use and must find a spare
directory slot but none is availablR (See the "Directory Records" section.) Copy
the disk's files to a newly formatted diskette to reduce file fragmentation. You
may use backup by class or backup reconstruct to reduce fragmentation.

Directory read error (Error 17, X'11')

A disk error occurred during a directory read. The problem may be media, hard
ware, or program failure. Move the disk to another drive and try the operation
again

Directory write error (Error 18, X'12')

A disk error occurred during a directory write to disk. The directory may no
longer be reliable. If the problem recurs, use a different diskette.

Disk S!)ace full (Error 27. X'i B'\

While a file was being written, all available disk space was used. The disk con
tains only a partial copy of the file. Write the file to a diskette that has more avail
able space. Then, REMOVE the partial copy to recover disk space ..

End of file encountered (Error 28, X'1C')

You tried to read past the end of file pointer. Use the DIR command to check the
size of the file. This error also occurs when you use the @PEOF supervisor call
to successfully position to the end of a file Check for an error in your application
program

Extended error (Error 63)

An error has occurred and the extended error code is in the HL register pair

File access denied (Error 25, X'19')

You specified a password for a file that is not password protected or you spec
ified the wrong password for a file that is password protected

File already open (Error 41, X'29')

You tried to open a file for UPDATE level or higher, and the file already is open
with this access level or higher. This forces a change to READ access protec
tion. Use the RESET library command to close the file.

File not in directory (Error 24, X'18')

The specified filespec cannot be found in the directory. Check the spelling of
the filespec.

File not open (Error 38, X'26')

You requested an 1/0 operation on an unopened file Open the file before
access

GAT read error (Error 20, X'14')

A disk error occurred during the reading of the Granule Allocation Table .. The
problem may be media, hardware, or program failure .. Move the diskette to
another drive and try the operation again

GAT write error (Error 21, X'15')

A disk error occurred during the writing of the Granule Allocation Table, The
GAT may no longer be reliable. If the problem recurs, use a different drive or
different diskette.

Software 194

HIT read error (Error 22, X'16')

A disk error occurred during the reading of the Hash Index Table. The problem
may be media, hardware, or program failure Move the diskette to another drive
and try the operation again

HIT write error (Error 23, X'17')

A disk error occurred during the writing of the Hash Index Table. The HIT may
no longer be reliable. If the problem recurs, use a different drive or different
diskette.

Illegal access attempted to protected file (Error 37, X'25')

The USER password was given for access to a file, but the requested access
required the OWNER password. (See the ATTRIB library command in your
Disk System Owner's Manual,)

Illegal drive number (Error 32, X'20')

The specified disk drive is not included in your system or is not ready for access
(no diskette, non-TRSDOS diskette, drive door open, and so on). See the
DEVICE command in your Disk System Owner's Manual.)

Illegal file name (Error 19, X'13')

The specified filespec does not meet TRSDOS filespec requirements. See your
Disk System Owner's Manual for proper filespec syntax,

Illegal logical file number (Error 16, X'l 0')

A bad Directory Entry Code (DEC) was found in the File Control Block (FCB).
This usually indicates that your program has altered the FCB improperly .. Check
for an error in your application program,

Load file format error (Error 34, X'22')

An attempt was made to load a file that cannot be loaded by the system loader
The file was probably a data file or a BASIC program file.

Lost data during read (Error 3, X'03')

During a sector read, the CPU did not accept a byte from the Floppy Disk Con
troller (FDC) data register in the time allotted The byte was lost This may indi
cate a hardware problem with the drive. Move the diskette to another drive and
try again. If the error recurs, try another diskette.

Lost data during write (Error 11, X'0B')

During a sector write, the CPU did not transfer a byte to the Floppy Disk Con
troller (FDC) in the time allotted .. The byte was lost; it was not transferred to the
disk. This may indicate a hardware problem with the drive. Move the diskette to
another drive and try again. If the error recurs, try another diskette.

LAL open fault (Error 42, X'2A')

The logical record length specified when the file was opened is different than
the LRL used when the file was created. COPY the file to another file that has
the specified LRL

No device space available (Error 33, X'21')

You tried to SET a driver or filter and all of the Device Control Blocks were in
use. Use the DEVICE command to see if any non-system devices can be
removed to provide more space. This error also occurs on a "global" request to
initialize a new file (that is, no drive was specified), if no file can be created.

No directory space available (Error 26, X'1A')

You tried to open a new file and no space was left in the directory. Use a differ
ent disk or REMOVE some files that you no longer need.

Software 195

No error (Error 0)

The @ERROR supervisor call was called without any error condition being
detected. A return code of zero indicates no error. Check for an error in your
application program

Parameter error (Error 44,X'2C')

(Under Version 6.2 only) An error occurred while executing a command line or
utility because a parameter that does not exist was specified Check the spell
ing of the parameter name, value, or abbreviation

Parity error during header read (Error 1, X'01')

During a sector 1/0 request, the system could not read the sector header suc
cessfully. If this error occurs repeatedly, the problem is probably media or hard
ware failure. Try the operation again, using a different drive or diskette.

Parity error during header write (Error 9, X'09')

During a sector write, the system could not write the sector header satisfactor
ily. If this error occurs repeatedly, the problem is probably media or hardware
failure. Try the operation again, using a different drive or diskette

Parity error during read (Error 4, X'04')

An error occurred during a sector read. Its probable cause is media failure or a
dirty or faulty disk drive. Try the operation again, using a different drive or
diskette

Parity error during write (Error 12, X'0C')

An error occurred during a sector write operation. Its probable cause is media
failure or a dirty or faulty disk drive. Try the operation again, using a different
drive or diskette

Program not found (Error 31, X'1 F')

The file cannot be loaded because it is not in the directory. Either the filespec
was misspelled or the disk that contains the file was not loaded.

Protected system device (Error 40, X'28')

You cannot REMOVE any of the following devices: *Kl, *DO, *PR, * JL, *SI, *SO.
If you try, you get this error message

Record number out of range (Error 29, X'10')

A request to read a record within a random access file (see the @POSN super
visor call) provided a record number that was beyond the end of the file. Correct
the record number or try again using another copy of the file.

Seek error during read (Error 2, X'02')

During a read sector disk 1/0 request, the cylinder that should contain the sec
tor was not found within the lime allotted. (The time is set by the step rate spec
ified in the Drive Code Table.) Either the cylinder is not formatted or it is no
longer readable, or the step rate is too low for the hardware to respond. You can
set an appropriate step rate using the SYSTEM library command .. The problem
may also be caused by media or hardware failure. In this case, try the operation
again, using a different drive or diskette.

Seek error during write (Error 10, X'0A')

During a sector write, the cylinder that should contain the sector was not found
within the time allotted. (The time is set by the step rate specified in the Drive
Code Table.) Either the cylinder is not formatted or it is no longer readable, or
the step rate is too low for the hardware to respond. You can set an appropriate
step rate using the SYSTEM library command. The problem may also be
caused by media or hardware failure. In this case, try the operation again, using
a different drive or diskette.

Software 196

- Unknown error code

The @ERROR supervisor call was called with an error number that is not
defined. Check for an error in your application program.

Write fault on disk drive (Error 14, X'0E')

An error occurred during a write operation. This probably indicates a hardware
problem. Try a different diskette or drive. If the problem continues, contact a
Radio Shack Service Center.

Write protected disk (Error 15, X'0F')

You tried to write to a drive that has a write-protected diskette or is software
write-protected .. Remove the write-protect tab, if the diskette has one. If it does
not, use the DEVICE command to see if the drive is set as write protected. If it
is, you can use the SYSTEM library command with the (WP= OFF) parameter
to write enable the drive. If the problem recurs, use a different drive or different
diskette

Numerical List of Error Messages
Decimal Hex

0 X'00'
1 X'01'
2 X'02'
3 X'03'
4 X'04'
5 X'05'
6 X'06'
7 X'07'
8 X'08'
9 X'09'

10 X'0A'
11 X'0B'
12 X'0C'
13 X'0D'
14 X'0E'
15 X'0F'
16 X'10'
17 X'11'
18 X'12'
19 X'13'
20 X'14'
21 X'15'
22 X'16'
23 X'17'
24 X'18'
25 X'19'
26 X'1A'
27 X'1B'
28 X'1C'
29 X'1D'
30 X'1E'
31 X'1F'
32 X'20'
33 X'21'
34 X'22'
37 X'25'
38 X'26'
39 X'27'
40 X'28'

Message

No Error
Parity error during header read
Seek error during read
Lost data during read
Parity error during read
Data recori:l not found during read
Attempted to read system data record
Attempted to read locked/deleted data record
Device not available
Parity error during header write
Seek error during write
Lost data during write
Parity error during write
Data record not found during write
Write fault on disk drive
Write protected disk
Illegal logical file number
Directory read error
Directory write error
Illegal file name
GAT read error
GAT write error
HIT read error
HIT write error
File not in directory
File access denied
No directory space available
Disk space full
End of file encountered
Record number out of range
Directory full-can't extend file
Program not found
Illegal drive number
No device space available
Load file format error
Illegal access attempted to protected file
File not open
Device in use
Protected system device

Software 197

41
42
43
44
63

X'29'
X'2A'
X'2B'
X'2C'
X'3F'

File already open
LRL open fault
SVC parameter error
Parameier error
Extended error
Unknown error code

Software 198

Appendix 8/Memory Map

I
I

I

I

I
I

> Resident operating system, system
buffers, overlays, drivers, etc.

'2400H

2600H_ > SOOOH Library overlay zone
1---.::.::.::.;.;..;...__--1

Note: 2400H to 2600H is
reserved for possible future
expansion of the resident
operating system area.

OPTIONAL I BANK 1 SYSTEM BANK
64K MEMORY \ 32K 1---B-A_N_K-

2
----1----B-A;;..N....;K;;..(l) __ ---1 32K

\
\
\

\
\
\

\
\
\

All software must observe HIGH$

HIGH$
64K

User software which does not allow TRSDOS library commands to be executed
during run time may use memory from 2600H to HIGH$

User software which allows for library commands during execution must reside
in and use memory only between 3000H and HIGH$.

TRSDOS provides all functions and storage through supervisor calls. No
address or entry point below 3000H is documented by Radio Shack.

Software 199

Appendix Cf Character Codes
Text, control functions, and graphics are represented in the computer by codes.
The character codes range from zero through 255

Codes one through 31 normally represent certain control functions. For exam
ple, code 13 represents a carriage return or "end of line'.' These same codes
also represent special characters. To display the special character that corre
sponds to a particular code (1-31), precede the code with a code zero.

Codes 32 through 127 represent the text characters - all those letters, num
bers, and other characters that are commonly used to represent textual
information.

Codes 128 through 191, when output to the video display, represent 64 graphics
characters.

Codes 192 through 255, when output to the video display, represent either
space compression codes or special characters, as determined by software.

Software 201

ASCII Character Set
Code ASCU

Dec. Hex. Abbrev. Keyboard Video Display
0 00 NUL ©'.iill@ID Treat next character as dis-

playable; if in the range 1-31,
a special character is dis-
played (see list of special
characters later in this
Appendix).

1 01 SOH ©'.iill®
2 02 STX ©'.iill®
3 03 ETX ©'.iill©
4 04 EOT ©'.iill®
5 05 ENO ©'.iill®
6 06 ACK ©'.iill®
7 07 BEL ©'.iill®
8 08 BS CD Backspace and erase

©'.iill®
9 09 HT CD

©'.fil)(I)
10 0A LF 0 Move cursor to start of next

l!illillW iine
11 0B VT 0

©'.iill®
12 0C FF ©'.fil)(D
13 0D CR IENTERI Move cursor to start of next

©'.iill® line
14 0E so ©'.iill® Turn cursor on
15 0F SI ©'.iill® Turn cursor off
16 10 OLE ©'.iill® Enable reverse video and

set high bit routine on*
17 11 DC1 ©'.iill® Set reverse video high bit

routine off*
18 12 DC2 ©'.iill®
19 13 DC3 ©'.iill®
20 14 DC4 ©'.fil)(!)
21 15 NAK ©'.iill® Swap space compression/

special characters
22 16 SYN ©'.iIDOO Swap special/alternate

characters
23 17 ETB ©'.iill® Set to 40 characters per line
24 18 CAN lfilllliJCD Backspace without erasing

©'.iill®
25 19 EM ISHIFTJ(D Advance cursor

©'.iill®
26 1A SUB ISHIFTl0 Move cursor down

©'.iill®
27 1B ESC ISHIFTl0 Move cursor up

©'.iIDGJ
28 1C FS ©'.iIDCD Move cursor to upper left

corneL Disable reverse
video and set high bit rou-
tine off.* Set to 80 charac-
ters per line.

29 1D GS ©'.fil)IENTERI Erase line and start over
©'.fil)G)

30 1E RS ©'.iIDCD Erase to end of line

*When the high bit routine is on, characters 128 through 191 are displayed as
standard ASCII characters in reverse video.

Software 202

Code ASCII
Dec. Hex. Abbrev. Keyboard Video Display

31 1F vs ISHIFTIICLEARI Erase to end of display
32 20 SPA ISPACEBARI (blank)
33 21 CD !
34 22 c::J
35 23 @) #
36 24 ® $
37 25 ® %
38 26 ® &
39 27 ('.)
40 28 m
41 29 CD
42 2A 0
43 2B CB +
44 2C ('.)
45 2D G
46 2E C:J
47 2F CD I
48 30 ® 0
49 31 (!) 1
50 32 ® 2
51 33 @ 3
52 34 @ 4
53 35 @ 5
54 36 (ID 6
55 37 (Z) 7
56 38 ® 8
57 39 ® 9
58 3A CD
59 3B CD
60 3C @ <
61 3D 0
62 3E 0 >
63 3F G) ?
64 40 @ID @
65 41 ISHIFTI@ A
66 42 ISHIFTI@ B
67 43 ISHIFTI© C
68 44 ISHIFTI@ D
69 45 ISHIFTl(IJ E
70 46 ISHIFTI® F
71 47 ISHIFTl(ID G
72 48 lfil!ml® H
73 49 ISHIFTl(I) I

74 4A lfil!mlGD J
75 4B ISHIFTl(K) K
76 4C ISHIFTl(!J L
77 4D ISHIFTI(!!) M
78 4E ISHIFTJ(ID N
79 4F ISHIFTI@ 0
80 50 ISHIFTl(f) p
81 51 !SHIFT@ Q
82 52 lfil!ml® R
83 53 lfil!ml® s
84 54 ISHIFTl(I) T
85 55 ISHIFTI@ u
86 56 lfil!ml® V
87 57 lfil!ml® w
88 58 ISHIFTl(X) X
89 59 ISHIFTl(Y) y

Software 203

Code ASCII
Dec. Hex. Abbrev. Keyboard Video Display

9© 5A ISHIFTl(ZJ z
91 5B ICLEAR)GJ r
92 5C ICLEAR)CZJ \
93 50 ICLEARIGJ ! 94 5E ICLEAA)(D
95 5F ICLEARIIENTERI
96 6© ISIIIFTl@D
97 61 ® a
98 62 ® b
99 63 © C

10© 64 ® d
101 65 ® e
102 66 ® f
103 67 ® 9
104 68 ® h
105 69 00 i
106 6A Q) j
107 6B ® k
108 6C (!J I
109 6D 00 rn
11© 6E ® n
111 6F ® 0
112 7© ® p
113 71 ® q
114 72 ® r
115 73 ® s
116 74 Ci) I
117 75 ® u
118 76 (ill V

119 77 ® w
12© 78 ® X

121 79 (Y) y
122 7A (ZJ z
123 7B ICLEARIISHIFTIGJ {
124 7C ICLEARl(SHIFT)CZJ I
125 70 ICLEAR)ISHIFTIG] }
126 7E ICLEARJISHIFT)(D
127 7F DEL ICLEARJISHIFTJIENTERI ±

Software 204

Extended (non-ASCII) Character Set
Code

Dec. Hex. Keyboard Video Display
128 80 IBREAKI
129 81 (Ill

©J!ID~®
130 82 ~

©J!ID~®
131 83 (fill

©J!ID~©
132 84 ©J!ID~®
133 85 ©J!ID~®
134 86 ICLEARl~(I)
135 87 ©J!ID~®
136 88 (CLEAR!~®
137 89 ©J!ID~(I) -~ 138 8A ©J!ID~Q) "Cl

139 8B ICLEARl~IK) C
a,

140 BC ©J!ID~(]J
Cl,
Cl,

141 8D ICLEARI~® <(

142 8E ICLEARI~®
u,

£ 143 8F ICLEARI~@ !: 144 90 ICLEARI~® a,
145 91 ®!m)(Il) :0

IGLEARl~(li) 1!1
146 92 ®!ml~ ij

©J!ID~® f!!
147 93 ®!ml®l Cll

.c
I CLEAR I~® u

u,
148 94 ©J!ID~Cf) u

.c
149 95 ©J!ID~® 0.

150 96 ©J!ID~Cli) f!!
Ol

151 97 ©J!ID~® a,
Q)

152 98 ICLEARl~OO Cl)

153 99 ICLEARl~(Y)
154 9A ICLEARl~ill
155 9B IGLEARIISHIFT)~
156 9C
157 9D
158 9E
159 9F
160 A0 ©J!!l)ISPACEI
161 A1 ©J!!l)ISHIFTl(1)
162 A2 ICLEARIISHIFTI®
163 A3 I CLEAR II SHIFT)@
164 A4 I CLEARllfililr!)@
165 A5 ICLEARllfil!m)@
166 A6 ICLEARl®!m)®
167 A7 I CLEAR llfil!m)(Ll
168 AB I CLEAR)lfil!m)(ID
169 A9 ICLEARIISHIFTJ®
170 AA ©J!ID®!m)GJ
171 AB
172 AC
173 AD ©J!IDG
174 AE
175 AF
176 B0 ICLEARI@
177 B1 ©J!!llaJ
178 B2 ©J!ID®

Software 205

Code
Dec. Hex. Keyboard Video Display

179 83 (CLEAR)@ .5
180 84 !CLEAR)@ Q)

181 85 !CLEAR)@ 1'i

182 86 !CLEAR)@
,l!!

183 87 ICLEARl(Z) $
u

184 88 ICLEARl(ID ~
185 89 !CLEAR)@

ct!
,C

186 BA !CLEAR)(;) ~ -~
187 BB u" - C:

188 BC
,:: Q)
C. C.

189 BO ©JAfi)ISHIFTIG ~ C.
Cl<(

190 BE Q) U)

191 BF 35 £
192 C0 !CLEAR)@)*
193 C1 !CLEAR)@**
194 C2 ICLEARJ(ID**
195 C3 !CLEAR)©**
196 C4 !CLEAR)@ ..
197 C5 !CLEAR)®**
103 C6 (C!.[Af:](I)**
199 C7 !CLEAR)@ ..
200 ca !CLEAR)@ ..
201 C9 !CLEAR)(!) ..
202 CA ICLEARIQ) .. ><
203 CB !CLEAR)@ .. u

C

204 cc ICLEAR)(jJ .. Q)
C.

205 CD !CLEAR)@** C.
<(

206 CE !CLEAR)@ .. u,

207 CF !CLEAR)@** £
208 D0 !CLEAR)®** .5
209 D1 !CLEAR)@** ~

210 D2 ICLEARJ(ID .. $
u

211 D3 ICLEARl([J .. ~
ct!

212 D4 ICLEAR)Ci) .. ,C
u

213 D5 !CLEAR)@** <ii
214 D6 ICLEAR)(li)** '1:3

Q)

215 D7 !CLEAR)@ .. C.
u,

216 D8 !CLEAR)® .. 0
217 D9 ICLEARJ(Y)** ~ 218 DA I CLEAR I®**

Q)

219 DB Q)

220 DC
Cl)

221 DD
222 DE
223 OF
224 E0 ICLEARIISHIFTI@)
225 E1 ICLEARIISHIFTI@
226 E2 ICLEARIISHIFTl(ID
227 E3 ICLEARIISHIFTI©
228 E4 ICLEARIISHIFTI@
229 E5 ICLEARIISHIFTI@
230 E6 ICLEARIISHIFTl(f)
231 E7 ICLEARIISHIFTI@
232 ES I CLEAR II SHIFT)@
233 E9 ICLEARIISHIFTJ(l)
234 EA ICLEARIISHIFTJQ)

*Empties the type-ahead buffer.
**Used by Keystroke Multiply, if KSM is active

Software 206

Code
Dec. Hex. Keyboard Video Display

235 EB @JN!)ISHIFTI® x
236 EC @JN!)I SHIFT l(jJ '6

C
237 ED @JN!)ISHIFTI@ a,

238 EE @JN!)ISHIFTI®
C.
C.

239 EF ©JN!)®lill)(ID <(
<I)

240 F0 ©JN!l®lilll® £
241 F1 @JN!)I SHIFT I@ s:
242 F2 @JN!)ISHIFTI® !!!
243 F3 @JN!)ISHIFl I@ {l
244 F4 @JN!)I SHIFT 1Cf) l'!
245 F5 @JN!)ISHIFTI@ "' .c
246 F6 @JN!)ISHIFTI@ (,)

rn 247 F7 ICLEARIISHIFTI® 0
248 F8 @JN!)ISHIFTI® a,

C.

249 F9 @JN!)ISHIFTl(Y) <I)

250 FA @JN!)ISHIFl l(I) 0
253 FD ~
254 FE a,

a,
255 FF Cl)

Software 207

Graphics Characters (Codes 128-191)

-

Software 208

Special Characters (0-31, 192-255)

£1E-LJA-,Q
0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

♦•+~~l
192 193 194 195 196 197 198 199

200 201 202 203 204 205 206 207

Software 209

Lal< .. t I
.,.,. m - 1. I!
l!3

J
208 209 210 211 212 213 214 215

F• I ,_i -::-::.'¥
216 217 218 219 220 221 222 223

~1 Ill .--., 1: - ~ !:i1 "fiEJ
m•

224 225 226 227 228 229 230 231

.. -'FT
~ 7■:- 0:11--..■

232 233 234 235 236 237 238 239

240 241 242 243 244 245 246 247

5-W
248 249 250 251 252 253 254 255

Software 210

Appendix D/Keyboard Code Map

The keyboard code map shows the code that TRSDOS returns for each key, in
each of the modes: control, shift, unshift, clear and control, clear and shift, clear
and unshift

For example, pressing ICLEARJ, ISHIFTI, and (I) at the same time returns the code
X'A1'

A program executing under TRSDOS - for example, BASIC- may translate
some of these codes into other values. Consult the program's documentation
for details

[BREAK) Key Handling
The IBREAKI key (X'S©') is handled in different ways, depending on the settings
of three system functions. The table below shows what happens for each com
bination of settings.
Break Break

Enabled Vector
Set

y N

y N

y y

y y

N X

Type
Ahead

Enabled
y

N

y

N

X

If characters are in the type-ahead buffer,
then the buffer is emptied.'

If the type-ahead buffer is empty, then a
BREAK character (X'S©') is placed in the
buffer.•
A BREAK character (X'S©') is placed in the
buffer.
The type-ahead buffer is emptied of its con
tents (if any), and control is transferred to the
address in the BREAK vector (see @BREAK
SVC).'
Control is transferred to the address in the
BREAK vector (see @BREAK SVC).
No action is taken and characters in the type
ahead buffer are not affected.

•Because the IBREAKI key is checked for more frequently than other keys on the
keyboard, it is possible for IBREAKI to be pressed after another key on the key
board and yet be detected first.

Y means that the function is on or enabled
N means that the function is off or disabled
X means that the state of the function has no effect

Break is enabled with the SYSTEM (BREAK= ON) command (this is the
default condition)

The break vector is set using the @BREAK SVC (normally off)
Type-ahead is enabled using the SYSTEM (TYPE=ON) command (this is the

default condition)

Software 211

(J)

I
(ti
I\)

;;;

81 31 B2 32 83 33 84 34 BS 35 86 36 87 37 88 38 89 39 80 30 BA tt AD 2D 80 80
!

,,
$ % & () . = B

A1 1 21 A2 2 22A3323 A4 4 24 AS 5 25 AG 6 26 A7 7 27 AB 8 28 A9 9 29 AO 0 t AA ' 2A 8D - 3D 80 R ttt
81 31 82 32 83 33 84 34 85 35 86 36 87 37 88 38 89 39 80 30 BA 3A AD 2D 80 K s0

88 08 91 11 97 17 85 05 92 12 94 14 99 19 95 15 89 09 BF OF 90 10 0 0 88 GB 89 09

98 t 18 F1 Q 51 F7 W 57 ES E 45F2R52 F4 T 54 F9 y 59F5U55 ES I 49 EF O 4F F0 p 50 E0@ 6098-18 99 ➔ 19
BB 0B 01 71 07 77 cs 65 D2 72 D4 74 09 79 05 75 C9 69 CF SF DO 70 co 40 88 08 89 09

BA 0A 81 01 93 13 84 04 86 06 87 07 88 08 BA 0A BB 0£; BC 0C 1E 1E SD 0D C
+ ENTER

L
1r-

SA + A 41 F3 S D F 46 E7 G 47 EB H 48 EA J 4AEBK4E EC L E
1A El 53 E4 44 ES 4C 7E 28 7F 1D A

BA 0A Cl 61 D3 73 C4 64 cs 66 C7 67 CB 68 CA GA CB GE, CC SC SE 38 SF 0D R
SA 1A 98 18 83 03 96 16 82 02 BE OE SD OD 18 18 10 10 1C 1C

/

3C70?3E

?
SHIFT FAZ SA FB X 58 E3 C 43F6V56 E2 B 42 EE N 4E ED M 4D 78 ·: 7C / 3F SHIFT

DA 7A 08 78 C3 63 06 76 C2 62 CE GE CD 6D 58 2C SD 2E SC 2F

00
C A0 C
T

A0
20 A

R p
L A0 20 s

The keys may be positioned differently on your keyboard. However, they produce the same codes. 81 81 82 82 83 83

s1 F1 s1 s2 F2 s2 93 F3 93

LEGEND:

Clear and Control □•
Clear and Left Shift • •
Clear and Unshift • •

Control

Shift
Unshift

Note: Pressing CONTROL, SHIFT, and
@ at the same time generates an
EOF lend of file) - - X'1C'
with NZ return flag.

Whenever pressing CLEAR,
SHI FT, and another key at the
same time, be sure to use the
left SH I FT key - not the right
SHIFT key.

Pressing SH I FT and 0 at the same
time !or CAPS alone) turns the
CAPS mode on or off,

tt Pressing CONTROL and · at the
same time causes a screen pnnt.

ttt Pressing SHIFT and BREAK at
the same time reselects the last
drive.

Codes for these keys
are the same as for
tre main keyboard.

81 81 82 82 83 33

7 8 9

4 5 6

1 2 3

1/i . ENT

Appendix E/Programmable SVCs
(Under Version 6.2 only)

SVC numbers 124 through 127 are reserved for programmer installable SVCs
To install an SVC the programmer must write the routine to execute when the
SVC is called

The routine should be written as high memory module if it is to be available at
all times If you execute a SYSGEN command when a programmable SVC is
defined, the address of the routine is saved in the SYSGEN file and restored
each time the system is configured. If the routine is a high memory module, the
routine is saved and restored as well This makes the SVC always available
For more information on high memory modules, see Memory Header and Sam
ple Program F

To install an SVC, the program must access the SVC table The SVC table con
tains 128 two-byte positions, a two-byte position for each usable SVC. Each po
sition in the table contains the address of the routine to execute when the SVC
is called.

To access the SVC table, execute the (r, FLAGS SVC (SVC 101) .. IY + 26 con
tains the MSB of the SVC table start address The LSB of the SVC table ad
dress is always (!) because the SVC table always begins on a page boundary

Store the address of the routine to be executed at the SVC number times 2 byte
in the table. For example, if you are installing SVC 126, store the address of the
routine at byte 252 in the table. Addresses are stored in LSB-MSB format

When the SVC is executed, control is transferred to the address in the table. On
entry to your SVC, Register A contains the same value as Register C All other
registers retain the values they had when the RST 28 SVC instruction was
executed

To exit the SVC, execute a RET instruction. The program should save and re
store any registers used by the SVC

Initially, SVCs 124 through 127 display an error message when they are exe
cuted When installing an SVC you should save the original address at that lo
cation in the table and restore it when you remove the SVC

These program lines insert a new SVC into the system SVC table, save the pre
vious value of the table, and reinsert that value before execution ends. You
could check the existing value to see if the address is above X'2600' If it is, the
SVC is already assigned and should not be used at this time

This code inserts SVC 126, called MYSVC:

LD A,(<1 FLAGS ;Locate start of SVC table
RST 28H ;Execute /i1 FLAGS SVC
LD H,(IY+26) ;Get MSB of address
LD L,126'2 ;Want to use SVC 1 26
LD (OSVC126A),HL ;Save address of SVC entry
LD E,(HL) ;Get current SVC address
INC HL
LD D,(HL)
LD (OSVC126V),DE ;Save the old value
DEC HL
LD DE,MYSVC ;Get address of routine for

;SVC 126
LD (HL),E ;Insert new SVC address into

;table
INC HL

Software 213

LD (HL),D

. Code that uses MYSVC (SVC 126)

This code removes SVC 126:

LD
LD
LD
INC
LD

HL,(OSVC126A)
DE,(OSVC126V)
(HL),E
HL
(HL),D

Software 214

;Get address of SVC entry
;Get original value
;Insert original SVC address

Appendix F/Using SYS13/SYS
(Under Version 6.2 only)

With TRSDOS Version 6 .. 2, you can create an Extended Command Inter
preter (ECI) or an Immediate Execution Program (IEP). TRSDOS can store
either an ECI or IEP in the SYS13 file. Both programs cannot be present at
the same time

At the TRSDOS Ready prompt when you type GJ IENTERI, TRSDOS exe
cutes the program stored in SYS13/SYS Because TRSDOS recognizes the
program as a system file, TRSDOS includes the file when creating backups
and loads the program faster

If you want to write additional commands for TRSDOS, you can write an in
terpreter to execute these commands. Your ECI can also execute TRSDOS
commands by using the @CMNDI SVC to pass a command to the
TRSDOS interpreter.

If EFLAG$ contains a non-zero value, TRSDOS executes the program in
SYS13/SYS. If EFLAG$ contains a zero, TRSDOS uses its own command
interpreter.

Sample Program G is an example of an ECI. It is important to note that your ECI
must be executable by pressing GJ IENTERI at the TRSDOS Ready prompt

An ECI can use all of memory or you can restrict it to use the system overlay
area (X'2600' to X'2FFF')

To implement an IEP or ECI, use the following syntax:

COPY filespec SYS13/SYS LSIDOS:drive (C = N) I ENTER I

filespec can be any executable (/CMD) program file. drive specifies the desti
nation drive. The destination drive must contain an original SYS13/SYS file

Example

COPY SCRIPSIT/CMD:1 SYS13/SYSLDl:0 (C= N)

TRSDOS copies SCRIPSIT/CMD from Drive 1 to SYS13/SYS in Drive 0. At the
TRSDOS Ready prompt, when you press GJ IENTERI, TRSDOS executes
SCRIPSIT.

Software 215

Index
Subject Page Subject Page

@ABORT
Access

device
drive
file

@ADTSK
Alien disk controller ..
Allocation

dynamic .
information
methods of
pre- ..
unit of

ASCII codes
Background tasks, invoking
@BANK ...
Bank switching
@BKSP
BOOT/SYS
BREAK

detection
key handling

@BREAK.
Byte 1/0
Characters

ASCII ..
codes
graphics
special

@CHNIO
@CKDRV
@CKBRKC
@CKEOF
@CKTSK
Clock rate, changing
@CLOSE ...
@CLS .
@CMNDI
@CMNDR
Codes

48

.9·10
11-21

4
49
12

""··-- 3
12, 25

3
3

..... 2
202-04
33-34

... 37-39
36-39

. 52
5

... 29-32, 53
. 211

53
40-42

.. 202-04

.. 201-10
. 205-06, 208

. 206-07, 209-10
54

.... 55
.. 55
. 56
. 57

. 192
. 60

61
63
64

ASCII . 202-04
character . . 201-10
error 197
graphics . . 205-06, 208
keyboard . . . 211-12
return 28
special character .. 206-07, 209-10

Converting to TRSDOS Version 6 27-28
CREATEd files 15
@CTL . . 40-42, 65-66

interfacing to device drivers 42-44
Cylinder

highest numbered
number of
position, current
starting

@DATE

.. 12
18
12
25
67

... 68 @DCINIT
@DCRES
@DCSTAT
DEBUG .

. 69

@DEBUG
@DECHEX
Density, double and single .
Device

... 70
6

. 71

. 72
..... 1, 11, 18

access9-10
handling ... 27
NIL.. 9

Device Control Block (DCB) 9
Device driver 7, 8, 13

address 9
COM 43-44
@CTL interfacing to 42-44
keyboard . . 43
printer 43
templates 40-42
video 43

Devspec . 9
Directory

location on disk ...
primary and extended entries

. 2, 12
14

16, 20
20

13-16
14

18-19
20, 24

73
5

74

record, locating a
records (DIREC) ..
sectors, number of

Directory Entry Code (DEC)

@DIRRD
DIR/SYS
@DIRWR
Disk, diskette

controller
double-sided
files
floppy ...
formatting
hard
1/0 table
minimum configuration
name

12
..... 11-12, 17, 18

13-14
1

......... 17, 18
2

13
7-8
18

Software 217

Index
Subject Page Subject Page

organization
single-sided
space, available

.... 1-2
.. 11-12, 17, 18

contents of
Graphics

16-18

@DIVS
@DIV16
@DODIR
Drive

access
address
floppy
hard
size

Urive Gode I able Ut.; I
Driver - see Device driver
@DSP
@DSPLY
End of File (EOF)
Ending Record Number (ERN)
ENTER detection
Error

codes and messages
dictionary

@ERROR
@EXIT
Extended Command Interpreter
@FEXT
File

access
descriptions, TRSDOS
modification

File Control Block (FCB)
Files

CREATEd
device driver
filter
system (/SYS) ..
utility

Filter templates
Filters ...

example of
FLAGS ..
@FNAME
@FSPEC
@GET
Gran, granule

allocation information
definition
per track

Granule Allocation Table (GAT)
location on disk ..

.2
.. 75
.. 76
77-78

11-22
... 12

. . 1, 11

.. 2, 11
11

11-18

79
... 80

15
... 16, 25

29-32

. . . 193-197
6

... 81
.. 82

84,215
83

4
.5-8

15
. 23

. 15
7
7

5-6, 7-8, 19
. ''' 7

. 40-42
. 7, 8, 40-42

42
.... 28, 84-86

. 87
.... 89

40-42, 90

25
. . 2, 17
1-2, 12

2

characters, printing
codes ...

@GTDCB
@GTDCT
@GTMOD
Guidelines, programming
Hash code ..
Hash Index Table (HIT)

location on disk
explanation of

(Q!riuFMT
@HEXDEC
@HEXB
@HEX16
@HIGH$

190
. . 205-06, 208

.. 91
. 92

93
27-44

. .. 15, 18

@ICNFG, interfacing to
Immediate Execution Program

2
18-19

94
95

. 96
97

.... 98
32-33

215
99 @INIT

Initialization configuration
vector

Interrupt tasks
@IPL
Job Control Language (JCL)
@KBD
@KEY
Keyboard codes
@KEVIN .. .
KFLAG$.. .
@KITSK, interfacing to
@KLTSK
Library commands

technical information on
@LOAD
@LOC ..
@LOF
LOG utility
@LOGER
Logical Record Length (LRL)
@LOGOT

32-33
34-36
. 100

..... 6, 28
. 101

. . 102
... 211-12

103
29

... 33-34
... 104

28
189-91

. 105

. 106
.... 107

190
. 108

. 15, 24
. . 109

Memory banks - see RAM banks
Memory header .. 10, 27

.. 199
7

. 15
. 110
........... 111

112
24

Memory map.
Minimum configuration disk
Modification date
@MSG
@MUL8
@MUL16 ..
Next Record Number (NRN)

Software 218

Subject

NIL device
@OPEN
Overlays, system
@PARAM
Password

for TRSDOS files
protection levels

@PAUSE
PAUSE detection ..
@PEOF
@POSN
@1PRINT
Printing Graphics Characters
Programming Guidelines
Protection Levels
@PAT
@PUT
RAM Banks

switching
use of

@RAMDIR
@RDHDR
@RDSEC
@RDSSC
@RDTRK.
@READ
Record

length
logical and physical
numbers
processing
spanning

@REMOV
@RENAM
Restart Vectors (RSTs)
Return Code (RC)
@REW
@RMTSK
@RPTSK
@RREAD
RS-232

initializing
COM driver for .

@RSLCT
@ASTOR
@RUN ..
@AWAIT
Sample Programs

A.

Index
Page Subject Page

9
113

5-6, 19
114-15

8
.. 14, 24

116
29-32

117
118
119
190

27-44
14, 24, 27

120
. . 40-42, 121

36-39
50-51

122
123

.. . 124
125

. 126
127

..... 3-4, 15, 24
3-4

4
4

3-4
128
129

... 29
.. 28

130
131
132
133

............ 32
43-44

134
135

. 136
..... 137

160-83
161

C
D
E
F
G

Sectors
per cylinder
per granule

@SEEK
@SEEKSC
@SKIP
@SLCT
@SOUND
Special Characier Codes
Stack handling
Step rate

changing
@STEPI
Supervisor calls (SVCs)

168
175

.. 177
178
187

. 14, 19
1-2, 12

138
139

. 140
141
142

. 206-07, 209-10
28
11

189
143

calling procedure 45
lists of -46-47, 155-57, 158-59
program entry and

return conditions
sample programs using
using

SYS files
System

files
overlays

Task

. 45
.. 160-183

.... 45-183
5-6, 7-8, 19

. 5-6, 7-8, 19
. 5-6, 19

interrupt level, adding . . . 49
slots 34, 35, 49

Task Control Block (TCB) 34, 35, 49
Vector Table (TCBVT) 34, 35

Task processor, interfacing to 34-36
@TIME 144
TRSDOS

converting to Version 6
error messages and codes
file descriptions
technical information on

27-28
193-97

5-8

commands and utilities 189-91
TYPE code 23
@VDCTL 145-46
@VER 147
Version, operating system 17
Visibility 14
@VRSEC 148
WAIT value, changing 190

B 163 @WEOF 149

Software 219

Subject

@WHERE
@WRITE
Write Protect ..

Index
Page

150
.. 151

9

Subject

@WRSEC
@WRSSC
@WRTRK

Software 220

Page

... 152
. 153

... 154

Index
Subject Page Subject Page

Software 221

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

AUSTRALIA

91 KURRAJONG AVENUE
MOUNT ORUITT, N.S.W. 2770

S-L/3-85

TANDY CORPORATION
BELGIUM

PARC INDUSTRIEL
5140 NANINNE (NAMUR)

U. K

BILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

Printed in U.S.A.

Custom Manufactured in USA By RADIO SHACK. A D1v1s1on of TANDY CORPORATION

